Loading…

Different origins of lysophospholipid mediators between coronary and peripheral arteries in acute coronary syndrome

Lysophosphatidic acids (LysoPAs) and lysophosphatidylserine (LysoPS) are emerging lipid mediators proposed to be involved in the pathogenesis of acute coronary syndrome (ACS). In this study, we attempted to elucidate how LysoPA and LysoPS become elevated in ACS using human blood samples collected si...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lipid research 2017-02, Vol.58 (2), p.433-442
Main Authors: Kurano, Makoto, Kano, Kuniyuki, Dohi, Tomotaka, Matsumoto, Hirotaka, Igarashi, Koji, Nishikawa, Masako, Ohkawa, Ryunosuke, Ikeda, Hitoshi, Miyauchi, Katsumi, Daida, Hiroyuki, Aoki, Junken, Yatomi, Yutaka
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lysophosphatidic acids (LysoPAs) and lysophosphatidylserine (LysoPS) are emerging lipid mediators proposed to be involved in the pathogenesis of acute coronary syndrome (ACS). In this study, we attempted to elucidate how LysoPA and LysoPS become elevated in ACS using human blood samples collected simultaneously from culprit coronary arteries and peripheral arteries in ACS subjects. We found that: 1) the plasma LysoPA, LysoPS, and lysophosphatidylglycerol levels were not different, while the lysophosphatidylcholine (LysoPC), lysophosphatidylinositol, and lysophosphatidylethanolamine (LysoPE) levels were significantly lower in the culprit coronary arteries; 2) the serum autotaxin (ATX) level was lower and the serum phosphatidylserine-specific phospholipase A1 (PS-PLA1) level was higher in the culprit coronary arteries; 3) the LysoPE and ATX levels were significant explanatory factors for the mainly elevated species of LysoPA, except for 22:6 LysoPA, in the peripheral arteries, while the LysoPC and LysoPE levels, but not the ATX level, were explanatory factors in the culprit coronary arteries; and 4) 18:0 and 18:1 LysoPS were significantly correlated with PS-PLA1 only in the culprit coronary arteries. In conclusion, the origins of LysoPA and LysoPS might differ between culprit coronary arteries and peripheral arteries, and substrates for ATX, such as LysoPC and LysoPE, might be important for the generation of LysoPA in ACS.
ISSN:0022-2275
1539-7262
DOI:10.1194/jlr.P071803