Loading…
Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface
The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalc...
Saved in:
Published in: | Nature communications 2020-07, Vol.11 (1), p.3634-3634, Article 3634 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33 |
---|---|
cites | cdi_FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33 |
container_end_page | 3634 |
container_issue | 1 |
container_start_page | 3634 |
container_title | Nature communications |
container_volume | 11 |
creator | Colombara, Diego Elanzeery, Hossam Nicoara, Nicoleta Sharma, Deepanjan Claro, Marcel Schwarz, Torsten Koprek, Anna Wolter, Max Hilaire Melchiorre, Michele Sood, Mohit Valle, Nathalie Bondarchuk, Oleksandr Babbe, Finn Spindler, Conrad Cojocaru-Miredin, Oana Raabe, Dierk Dale, Phillip J. Sadewasser, Sascha Siebentritt, Susanne |
description | The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe
2
photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe
2
solar cells.
Anion vacancies are a hurdle for technologies based on chalcogenide semiconductors and topological insulators. Even at room temperature, oxidation and cyanide etching can lead to selenium vacancies in CuInSe
2
photovoltaic material but suitable post deposition treatments can mitigate their effect. |
doi_str_mv | 10.1038/s41467-020-17434-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0226f4669b2b4f8287fc6607b094f0aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0226f4669b2b4f8287fc6607b094f0aa</doaj_id><sourcerecordid>2425423042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33</originalsourceid><addsrcrecordid>eNp9Uk1r3DAQFaWlCdv8gZ5Me-nFqb4syZdCWfoRCPTSnoU8ltdabGkrySn776ONlzTpoQKhGc17T8PTIPSW4GuCmfqYOOFC1pjimkjOeK1eoEuKOSkpZS-fxBfoKqU9Lou1RHH-Gl0wKpQQil-ibjva2YGZKudTNp2bXD5WJlcwmgnCznrX2yotcTBgU-Xmg4GcztXDMbpsq97euVPxj52mqrPH4Psqj4-sN-jVYKZkr87nBv36-uXn9nt9--PbzfbzbQ0N57mWIKQ0fS-kYAOHVjIA0rIOpDCtgkZaDqY0LmnfDW1PCaMdZ5I1hjJpLGMbdLPq9sHs9SG62cSjDsbph4sQd9rE7GCyGlMqBi5E2xWNQVElBxACyw63fMDGFK1Pq9Zh6Wbbg_U5mumZ6POKd6PehTstmSRKnZp5twqElJ1OUHyCEYL3FrImighSvmODPpxfieH3YlPWs0tQXDTehiVpymnTqFY0vEDf_wPdhyX64ucDilOGy94guqIghpSiHR47JlifxkavY1MMKPlpbLQqJLaSUgH7nY1_pf_Dugd-YcOw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425423042</pqid></control><display><type>article</type><title>Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>NCBI_PubMed Central(免费)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Colombara, Diego ; Elanzeery, Hossam ; Nicoara, Nicoleta ; Sharma, Deepanjan ; Claro, Marcel ; Schwarz, Torsten ; Koprek, Anna ; Wolter, Max Hilaire ; Melchiorre, Michele ; Sood, Mohit ; Valle, Nathalie ; Bondarchuk, Oleksandr ; Babbe, Finn ; Spindler, Conrad ; Cojocaru-Miredin, Oana ; Raabe, Dierk ; Dale, Phillip J. ; Sadewasser, Sascha ; Siebentritt, Susanne</creator><creatorcontrib>Colombara, Diego ; Elanzeery, Hossam ; Nicoara, Nicoleta ; Sharma, Deepanjan ; Claro, Marcel ; Schwarz, Torsten ; Koprek, Anna ; Wolter, Max Hilaire ; Melchiorre, Michele ; Sood, Mohit ; Valle, Nathalie ; Bondarchuk, Oleksandr ; Babbe, Finn ; Spindler, Conrad ; Cojocaru-Miredin, Oana ; Raabe, Dierk ; Dale, Phillip J. ; Sadewasser, Sascha ; Siebentritt, Susanne ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe
2
photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe
2
solar cells.
Anion vacancies are a hurdle for technologies based on chalcogenide semiconductors and topological insulators. Even at room temperature, oxidation and cyanide etching can lead to selenium vacancies in CuInSe
2
photovoltaic material but suitable post deposition treatments can mitigate their effect.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-17434-8</identifier><identifier>PMID: 32686684</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/135 ; 147/136 ; 147/28 ; 147/3 ; 639/638/161 ; 639/638/263 ; 639/638/549 ; 639/638/675 ; 639/638/911 ; Anions ; Chalcogenides ; Chalcopyrite ; Chemical synthesis ; Chemical treatment ; Coordination chemistry ; Copper indium selenides ; Cyanides ; Electrochemistry ; Electronics industry ; Energy ; Etching ; Humanities and Social Sciences ; Inorganic chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Material properties ; multidisciplinary ; Optoelectronic devices ; Oxidation ; Performance enhancement ; Photovoltaic cells ; Photovoltaics ; Point defects ; Post-production processing ; Room temperature ; Science ; Science (multidisciplinary) ; Selenium ; Semiconductors ; Solar cells ; Surface stability ; Topological insulators ; Topology ; Vacancies</subject><ispartof>Nature communications, 2020-07, Vol.11 (1), p.3634-3634, Article 3634</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33</citedby><cites>FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33</cites><orcidid>0000-0002-0909-4635 ; 0000-0003-0536-907X ; 0000-0001-8384-6025 ; 0000-0001-7380-8930 ; 0000-0002-4339-7437 ; 0000-0001-6032-2499 ; 0000-0002-2714-7737 ; 0000-0002-9131-638X ; 0000-0003-4821-8669 ; 0000-0002-8306-0994 ; 0000000183846025 ; 0000000209094635 ; 0000000173808930 ; 0000000227147737 ; 0000000283060994 ; 000000029131638X ; 0000000243397437 ; 0000000348218669 ; 0000000160322499 ; 000000030536907X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2425423042/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2425423042?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1816100$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Colombara, Diego</creatorcontrib><creatorcontrib>Elanzeery, Hossam</creatorcontrib><creatorcontrib>Nicoara, Nicoleta</creatorcontrib><creatorcontrib>Sharma, Deepanjan</creatorcontrib><creatorcontrib>Claro, Marcel</creatorcontrib><creatorcontrib>Schwarz, Torsten</creatorcontrib><creatorcontrib>Koprek, Anna</creatorcontrib><creatorcontrib>Wolter, Max Hilaire</creatorcontrib><creatorcontrib>Melchiorre, Michele</creatorcontrib><creatorcontrib>Sood, Mohit</creatorcontrib><creatorcontrib>Valle, Nathalie</creatorcontrib><creatorcontrib>Bondarchuk, Oleksandr</creatorcontrib><creatorcontrib>Babbe, Finn</creatorcontrib><creatorcontrib>Spindler, Conrad</creatorcontrib><creatorcontrib>Cojocaru-Miredin, Oana</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><creatorcontrib>Sadewasser, Sascha</creatorcontrib><creatorcontrib>Siebentritt, Susanne</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe
2
photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe
2
solar cells.
Anion vacancies are a hurdle for technologies based on chalcogenide semiconductors and topological insulators. Even at room temperature, oxidation and cyanide etching can lead to selenium vacancies in CuInSe
2
photovoltaic material but suitable post deposition treatments can mitigate their effect.</description><subject>147/135</subject><subject>147/136</subject><subject>147/28</subject><subject>147/3</subject><subject>639/638/161</subject><subject>639/638/263</subject><subject>639/638/549</subject><subject>639/638/675</subject><subject>639/638/911</subject><subject>Anions</subject><subject>Chalcogenides</subject><subject>Chalcopyrite</subject><subject>Chemical synthesis</subject><subject>Chemical treatment</subject><subject>Coordination chemistry</subject><subject>Copper indium selenides</subject><subject>Cyanides</subject><subject>Electrochemistry</subject><subject>Electronics industry</subject><subject>Energy</subject><subject>Etching</subject><subject>Humanities and Social Sciences</subject><subject>Inorganic chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Material properties</subject><subject>multidisciplinary</subject><subject>Optoelectronic devices</subject><subject>Oxidation</subject><subject>Performance enhancement</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Point defects</subject><subject>Post-production processing</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selenium</subject><subject>Semiconductors</subject><subject>Solar cells</subject><subject>Surface stability</subject><subject>Topological insulators</subject><subject>Topology</subject><subject>Vacancies</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1r3DAQFaWlCdv8gZ5Me-nFqb4syZdCWfoRCPTSnoU8ltdabGkrySn776ONlzTpoQKhGc17T8PTIPSW4GuCmfqYOOFC1pjimkjOeK1eoEuKOSkpZS-fxBfoKqU9Lou1RHH-Gl0wKpQQil-ibjva2YGZKudTNp2bXD5WJlcwmgnCznrX2yotcTBgU-Xmg4GcztXDMbpsq97euVPxj52mqrPH4Psqj4-sN-jVYKZkr87nBv36-uXn9nt9--PbzfbzbQ0N57mWIKQ0fS-kYAOHVjIA0rIOpDCtgkZaDqY0LmnfDW1PCaMdZ5I1hjJpLGMbdLPq9sHs9SG62cSjDsbph4sQd9rE7GCyGlMqBi5E2xWNQVElBxACyw63fMDGFK1Pq9Zh6Wbbg_U5mumZ6POKd6PehTstmSRKnZp5twqElJ1OUHyCEYL3FrImighSvmODPpxfieH3YlPWs0tQXDTehiVpymnTqFY0vEDf_wPdhyX64ucDilOGy94guqIghpSiHR47JlifxkavY1MMKPlpbLQqJLaSUgH7nY1_pf_Dugd-YcOw</recordid><startdate>20200720</startdate><enddate>20200720</enddate><creator>Colombara, Diego</creator><creator>Elanzeery, Hossam</creator><creator>Nicoara, Nicoleta</creator><creator>Sharma, Deepanjan</creator><creator>Claro, Marcel</creator><creator>Schwarz, Torsten</creator><creator>Koprek, Anna</creator><creator>Wolter, Max Hilaire</creator><creator>Melchiorre, Michele</creator><creator>Sood, Mohit</creator><creator>Valle, Nathalie</creator><creator>Bondarchuk, Oleksandr</creator><creator>Babbe, Finn</creator><creator>Spindler, Conrad</creator><creator>Cojocaru-Miredin, Oana</creator><creator>Raabe, Dierk</creator><creator>Dale, Phillip J.</creator><creator>Sadewasser, Sascha</creator><creator>Siebentritt, Susanne</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0909-4635</orcidid><orcidid>https://orcid.org/0000-0003-0536-907X</orcidid><orcidid>https://orcid.org/0000-0001-8384-6025</orcidid><orcidid>https://orcid.org/0000-0001-7380-8930</orcidid><orcidid>https://orcid.org/0000-0002-4339-7437</orcidid><orcidid>https://orcid.org/0000-0001-6032-2499</orcidid><orcidid>https://orcid.org/0000-0002-2714-7737</orcidid><orcidid>https://orcid.org/0000-0002-9131-638X</orcidid><orcidid>https://orcid.org/0000-0003-4821-8669</orcidid><orcidid>https://orcid.org/0000-0002-8306-0994</orcidid><orcidid>https://orcid.org/0000000183846025</orcidid><orcidid>https://orcid.org/0000000209094635</orcidid><orcidid>https://orcid.org/0000000173808930</orcidid><orcidid>https://orcid.org/0000000227147737</orcidid><orcidid>https://orcid.org/0000000283060994</orcidid><orcidid>https://orcid.org/000000029131638X</orcidid><orcidid>https://orcid.org/0000000243397437</orcidid><orcidid>https://orcid.org/0000000348218669</orcidid><orcidid>https://orcid.org/0000000160322499</orcidid><orcidid>https://orcid.org/000000030536907X</orcidid></search><sort><creationdate>20200720</creationdate><title>Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface</title><author>Colombara, Diego ; Elanzeery, Hossam ; Nicoara, Nicoleta ; Sharma, Deepanjan ; Claro, Marcel ; Schwarz, Torsten ; Koprek, Anna ; Wolter, Max Hilaire ; Melchiorre, Michele ; Sood, Mohit ; Valle, Nathalie ; Bondarchuk, Oleksandr ; Babbe, Finn ; Spindler, Conrad ; Cojocaru-Miredin, Oana ; Raabe, Dierk ; Dale, Phillip J. ; Sadewasser, Sascha ; Siebentritt, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>147/135</topic><topic>147/136</topic><topic>147/28</topic><topic>147/3</topic><topic>639/638/161</topic><topic>639/638/263</topic><topic>639/638/549</topic><topic>639/638/675</topic><topic>639/638/911</topic><topic>Anions</topic><topic>Chalcogenides</topic><topic>Chalcopyrite</topic><topic>Chemical synthesis</topic><topic>Chemical treatment</topic><topic>Coordination chemistry</topic><topic>Copper indium selenides</topic><topic>Cyanides</topic><topic>Electrochemistry</topic><topic>Electronics industry</topic><topic>Energy</topic><topic>Etching</topic><topic>Humanities and Social Sciences</topic><topic>Inorganic chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Material properties</topic><topic>multidisciplinary</topic><topic>Optoelectronic devices</topic><topic>Oxidation</topic><topic>Performance enhancement</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Point defects</topic><topic>Post-production processing</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selenium</topic><topic>Semiconductors</topic><topic>Solar cells</topic><topic>Surface stability</topic><topic>Topological insulators</topic><topic>Topology</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombara, Diego</creatorcontrib><creatorcontrib>Elanzeery, Hossam</creatorcontrib><creatorcontrib>Nicoara, Nicoleta</creatorcontrib><creatorcontrib>Sharma, Deepanjan</creatorcontrib><creatorcontrib>Claro, Marcel</creatorcontrib><creatorcontrib>Schwarz, Torsten</creatorcontrib><creatorcontrib>Koprek, Anna</creatorcontrib><creatorcontrib>Wolter, Max Hilaire</creatorcontrib><creatorcontrib>Melchiorre, Michele</creatorcontrib><creatorcontrib>Sood, Mohit</creatorcontrib><creatorcontrib>Valle, Nathalie</creatorcontrib><creatorcontrib>Bondarchuk, Oleksandr</creatorcontrib><creatorcontrib>Babbe, Finn</creatorcontrib><creatorcontrib>Spindler, Conrad</creatorcontrib><creatorcontrib>Cojocaru-Miredin, Oana</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><creatorcontrib>Sadewasser, Sascha</creatorcontrib><creatorcontrib>Siebentritt, Susanne</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombara, Diego</au><au>Elanzeery, Hossam</au><au>Nicoara, Nicoleta</au><au>Sharma, Deepanjan</au><au>Claro, Marcel</au><au>Schwarz, Torsten</au><au>Koprek, Anna</au><au>Wolter, Max Hilaire</au><au>Melchiorre, Michele</au><au>Sood, Mohit</au><au>Valle, Nathalie</au><au>Bondarchuk, Oleksandr</au><au>Babbe, Finn</au><au>Spindler, Conrad</au><au>Cojocaru-Miredin, Oana</au><au>Raabe, Dierk</au><au>Dale, Phillip J.</au><au>Sadewasser, Sascha</au><au>Siebentritt, Susanne</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2020-07-20</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>3634</spage><epage>3634</epage><pages>3634-3634</pages><artnum>3634</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe
2
photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe
2
solar cells.
Anion vacancies are a hurdle for technologies based on chalcogenide semiconductors and topological insulators. Even at room temperature, oxidation and cyanide etching can lead to selenium vacancies in CuInSe
2
photovoltaic material but suitable post deposition treatments can mitigate their effect.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32686684</pmid><doi>10.1038/s41467-020-17434-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0909-4635</orcidid><orcidid>https://orcid.org/0000-0003-0536-907X</orcidid><orcidid>https://orcid.org/0000-0001-8384-6025</orcidid><orcidid>https://orcid.org/0000-0001-7380-8930</orcidid><orcidid>https://orcid.org/0000-0002-4339-7437</orcidid><orcidid>https://orcid.org/0000-0001-6032-2499</orcidid><orcidid>https://orcid.org/0000-0002-2714-7737</orcidid><orcidid>https://orcid.org/0000-0002-9131-638X</orcidid><orcidid>https://orcid.org/0000-0003-4821-8669</orcidid><orcidid>https://orcid.org/0000-0002-8306-0994</orcidid><orcidid>https://orcid.org/0000000183846025</orcidid><orcidid>https://orcid.org/0000000209094635</orcidid><orcidid>https://orcid.org/0000000173808930</orcidid><orcidid>https://orcid.org/0000000227147737</orcidid><orcidid>https://orcid.org/0000000283060994</orcidid><orcidid>https://orcid.org/000000029131638X</orcidid><orcidid>https://orcid.org/0000000243397437</orcidid><orcidid>https://orcid.org/0000000348218669</orcidid><orcidid>https://orcid.org/0000000160322499</orcidid><orcidid>https://orcid.org/000000030536907X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2020-07, Vol.11 (1), p.3634-3634, Article 3634 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0226f4669b2b4f8287fc6607b094f0aa |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); NCBI_PubMed Central(免费); Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 147/135 147/136 147/28 147/3 639/638/161 639/638/263 639/638/549 639/638/675 639/638/911 Anions Chalcogenides Chalcopyrite Chemical synthesis Chemical treatment Coordination chemistry Copper indium selenides Cyanides Electrochemistry Electronics industry Energy Etching Humanities and Social Sciences Inorganic chemistry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Material properties multidisciplinary Optoelectronic devices Oxidation Performance enhancement Photovoltaic cells Photovoltaics Point defects Post-production processing Room temperature Science Science (multidisciplinary) Selenium Semiconductors Solar cells Surface stability Topological insulators Topology Vacancies |
title | Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20instability%20at%20chalcogenide%20surfaces%20impacts%20chalcopyrite%20devices%20well%20beyond%20the%20surface&rft.jtitle=Nature%20communications&rft.au=Colombara,%20Diego&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-07-20&rft.volume=11&rft.issue=1&rft.spage=3634&rft.epage=3634&rft.pages=3634-3634&rft.artnum=3634&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-17434-8&rft_dat=%3Cproquest_doaj_%3E2425423042%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425423042&rft_id=info:pmid/32686684&rfr_iscdi=true |