Loading…

Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface

The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalc...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2020-07, Vol.11 (1), p.3634-3634, Article 3634
Main Authors: Colombara, Diego, Elanzeery, Hossam, Nicoara, Nicoleta, Sharma, Deepanjan, Claro, Marcel, Schwarz, Torsten, Koprek, Anna, Wolter, Max Hilaire, Melchiorre, Michele, Sood, Mohit, Valle, Nathalie, Bondarchuk, Oleksandr, Babbe, Finn, Spindler, Conrad, Cojocaru-Miredin, Oana, Raabe, Dierk, Dale, Phillip J., Sadewasser, Sascha, Siebentritt, Susanne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33
cites cdi_FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33
container_end_page 3634
container_issue 1
container_start_page 3634
container_title Nature communications
container_volume 11
creator Colombara, Diego
Elanzeery, Hossam
Nicoara, Nicoleta
Sharma, Deepanjan
Claro, Marcel
Schwarz, Torsten
Koprek, Anna
Wolter, Max Hilaire
Melchiorre, Michele
Sood, Mohit
Valle, Nathalie
Bondarchuk, Oleksandr
Babbe, Finn
Spindler, Conrad
Cojocaru-Miredin, Oana
Raabe, Dierk
Dale, Phillip J.
Sadewasser, Sascha
Siebentritt, Susanne
description The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe 2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe 2 solar cells. Anion vacancies are a hurdle for technologies based on chalcogenide semiconductors and topological insulators. Even at room temperature, oxidation and cyanide etching can lead to selenium vacancies in CuInSe 2 photovoltaic material but suitable post deposition treatments can mitigate their effect.
doi_str_mv 10.1038/s41467-020-17434-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0226f4669b2b4f8287fc6607b094f0aa</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0226f4669b2b4f8287fc6607b094f0aa</doaj_id><sourcerecordid>2425423042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33</originalsourceid><addsrcrecordid>eNp9Uk1r3DAQFaWlCdv8gZ5Me-nFqb4syZdCWfoRCPTSnoU8ltdabGkrySn776ONlzTpoQKhGc17T8PTIPSW4GuCmfqYOOFC1pjimkjOeK1eoEuKOSkpZS-fxBfoKqU9Lou1RHH-Gl0wKpQQil-ibjva2YGZKudTNp2bXD5WJlcwmgnCznrX2yotcTBgU-Xmg4GcztXDMbpsq97euVPxj52mqrPH4Psqj4-sN-jVYKZkr87nBv36-uXn9nt9--PbzfbzbQ0N57mWIKQ0fS-kYAOHVjIA0rIOpDCtgkZaDqY0LmnfDW1PCaMdZ5I1hjJpLGMbdLPq9sHs9SG62cSjDsbph4sQd9rE7GCyGlMqBi5E2xWNQVElBxACyw63fMDGFK1Pq9Zh6Wbbg_U5mumZ6POKd6PehTstmSRKnZp5twqElJ1OUHyCEYL3FrImighSvmODPpxfieH3YlPWs0tQXDTehiVpymnTqFY0vEDf_wPdhyX64ucDilOGy94guqIghpSiHR47JlifxkavY1MMKPlpbLQqJLaSUgH7nY1_pf_Dugd-YcOw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2425423042</pqid></control><display><type>article</type><title>Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>NCBI_PubMed Central(免费)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Colombara, Diego ; Elanzeery, Hossam ; Nicoara, Nicoleta ; Sharma, Deepanjan ; Claro, Marcel ; Schwarz, Torsten ; Koprek, Anna ; Wolter, Max Hilaire ; Melchiorre, Michele ; Sood, Mohit ; Valle, Nathalie ; Bondarchuk, Oleksandr ; Babbe, Finn ; Spindler, Conrad ; Cojocaru-Miredin, Oana ; Raabe, Dierk ; Dale, Phillip J. ; Sadewasser, Sascha ; Siebentritt, Susanne</creator><creatorcontrib>Colombara, Diego ; Elanzeery, Hossam ; Nicoara, Nicoleta ; Sharma, Deepanjan ; Claro, Marcel ; Schwarz, Torsten ; Koprek, Anna ; Wolter, Max Hilaire ; Melchiorre, Michele ; Sood, Mohit ; Valle, Nathalie ; Bondarchuk, Oleksandr ; Babbe, Finn ; Spindler, Conrad ; Cojocaru-Miredin, Oana ; Raabe, Dierk ; Dale, Phillip J. ; Sadewasser, Sascha ; Siebentritt, Susanne ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe 2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe 2 solar cells. Anion vacancies are a hurdle for technologies based on chalcogenide semiconductors and topological insulators. Even at room temperature, oxidation and cyanide etching can lead to selenium vacancies in CuInSe 2 photovoltaic material but suitable post deposition treatments can mitigate their effect.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-020-17434-8</identifier><identifier>PMID: 32686684</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>147/135 ; 147/136 ; 147/28 ; 147/3 ; 639/638/161 ; 639/638/263 ; 639/638/549 ; 639/638/675 ; 639/638/911 ; Anions ; Chalcogenides ; Chalcopyrite ; Chemical synthesis ; Chemical treatment ; Coordination chemistry ; Copper indium selenides ; Cyanides ; Electrochemistry ; Electronics industry ; Energy ; Etching ; Humanities and Social Sciences ; Inorganic chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Material properties ; multidisciplinary ; Optoelectronic devices ; Oxidation ; Performance enhancement ; Photovoltaic cells ; Photovoltaics ; Point defects ; Post-production processing ; Room temperature ; Science ; Science (multidisciplinary) ; Selenium ; Semiconductors ; Solar cells ; Surface stability ; Topological insulators ; Topology ; Vacancies</subject><ispartof>Nature communications, 2020-07, Vol.11 (1), p.3634-3634, Article 3634</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33</citedby><cites>FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33</cites><orcidid>0000-0002-0909-4635 ; 0000-0003-0536-907X ; 0000-0001-8384-6025 ; 0000-0001-7380-8930 ; 0000-0002-4339-7437 ; 0000-0001-6032-2499 ; 0000-0002-2714-7737 ; 0000-0002-9131-638X ; 0000-0003-4821-8669 ; 0000-0002-8306-0994 ; 0000000183846025 ; 0000000209094635 ; 0000000173808930 ; 0000000227147737 ; 0000000283060994 ; 000000029131638X ; 0000000243397437 ; 0000000348218669 ; 0000000160322499 ; 000000030536907X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2425423042/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2425423042?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1816100$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Colombara, Diego</creatorcontrib><creatorcontrib>Elanzeery, Hossam</creatorcontrib><creatorcontrib>Nicoara, Nicoleta</creatorcontrib><creatorcontrib>Sharma, Deepanjan</creatorcontrib><creatorcontrib>Claro, Marcel</creatorcontrib><creatorcontrib>Schwarz, Torsten</creatorcontrib><creatorcontrib>Koprek, Anna</creatorcontrib><creatorcontrib>Wolter, Max Hilaire</creatorcontrib><creatorcontrib>Melchiorre, Michele</creatorcontrib><creatorcontrib>Sood, Mohit</creatorcontrib><creatorcontrib>Valle, Nathalie</creatorcontrib><creatorcontrib>Bondarchuk, Oleksandr</creatorcontrib><creatorcontrib>Babbe, Finn</creatorcontrib><creatorcontrib>Spindler, Conrad</creatorcontrib><creatorcontrib>Cojocaru-Miredin, Oana</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><creatorcontrib>Sadewasser, Sascha</creatorcontrib><creatorcontrib>Siebentritt, Susanne</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><description>The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe 2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe 2 solar cells. Anion vacancies are a hurdle for technologies based on chalcogenide semiconductors and topological insulators. Even at room temperature, oxidation and cyanide etching can lead to selenium vacancies in CuInSe 2 photovoltaic material but suitable post deposition treatments can mitigate their effect.</description><subject>147/135</subject><subject>147/136</subject><subject>147/28</subject><subject>147/3</subject><subject>639/638/161</subject><subject>639/638/263</subject><subject>639/638/549</subject><subject>639/638/675</subject><subject>639/638/911</subject><subject>Anions</subject><subject>Chalcogenides</subject><subject>Chalcopyrite</subject><subject>Chemical synthesis</subject><subject>Chemical treatment</subject><subject>Coordination chemistry</subject><subject>Copper indium selenides</subject><subject>Cyanides</subject><subject>Electrochemistry</subject><subject>Electronics industry</subject><subject>Energy</subject><subject>Etching</subject><subject>Humanities and Social Sciences</subject><subject>Inorganic chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Material properties</subject><subject>multidisciplinary</subject><subject>Optoelectronic devices</subject><subject>Oxidation</subject><subject>Performance enhancement</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Point defects</subject><subject>Post-production processing</subject><subject>Room temperature</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Selenium</subject><subject>Semiconductors</subject><subject>Solar cells</subject><subject>Surface stability</subject><subject>Topological insulators</subject><subject>Topology</subject><subject>Vacancies</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9Uk1r3DAQFaWlCdv8gZ5Me-nFqb4syZdCWfoRCPTSnoU8ltdabGkrySn776ONlzTpoQKhGc17T8PTIPSW4GuCmfqYOOFC1pjimkjOeK1eoEuKOSkpZS-fxBfoKqU9Lou1RHH-Gl0wKpQQil-ibjva2YGZKudTNp2bXD5WJlcwmgnCznrX2yotcTBgU-Xmg4GcztXDMbpsq97euVPxj52mqrPH4Psqj4-sN-jVYKZkr87nBv36-uXn9nt9--PbzfbzbQ0N57mWIKQ0fS-kYAOHVjIA0rIOpDCtgkZaDqY0LmnfDW1PCaMdZ5I1hjJpLGMbdLPq9sHs9SG62cSjDsbph4sQd9rE7GCyGlMqBi5E2xWNQVElBxACyw63fMDGFK1Pq9Zh6Wbbg_U5mumZ6POKd6PehTstmSRKnZp5twqElJ1OUHyCEYL3FrImighSvmODPpxfieH3YlPWs0tQXDTehiVpymnTqFY0vEDf_wPdhyX64ucDilOGy94guqIghpSiHR47JlifxkavY1MMKPlpbLQqJLaSUgH7nY1_pf_Dugd-YcOw</recordid><startdate>20200720</startdate><enddate>20200720</enddate><creator>Colombara, Diego</creator><creator>Elanzeery, Hossam</creator><creator>Nicoara, Nicoleta</creator><creator>Sharma, Deepanjan</creator><creator>Claro, Marcel</creator><creator>Schwarz, Torsten</creator><creator>Koprek, Anna</creator><creator>Wolter, Max Hilaire</creator><creator>Melchiorre, Michele</creator><creator>Sood, Mohit</creator><creator>Valle, Nathalie</creator><creator>Bondarchuk, Oleksandr</creator><creator>Babbe, Finn</creator><creator>Spindler, Conrad</creator><creator>Cojocaru-Miredin, Oana</creator><creator>Raabe, Dierk</creator><creator>Dale, Phillip J.</creator><creator>Sadewasser, Sascha</creator><creator>Siebentritt, Susanne</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0909-4635</orcidid><orcidid>https://orcid.org/0000-0003-0536-907X</orcidid><orcidid>https://orcid.org/0000-0001-8384-6025</orcidid><orcidid>https://orcid.org/0000-0001-7380-8930</orcidid><orcidid>https://orcid.org/0000-0002-4339-7437</orcidid><orcidid>https://orcid.org/0000-0001-6032-2499</orcidid><orcidid>https://orcid.org/0000-0002-2714-7737</orcidid><orcidid>https://orcid.org/0000-0002-9131-638X</orcidid><orcidid>https://orcid.org/0000-0003-4821-8669</orcidid><orcidid>https://orcid.org/0000-0002-8306-0994</orcidid><orcidid>https://orcid.org/0000000183846025</orcidid><orcidid>https://orcid.org/0000000209094635</orcidid><orcidid>https://orcid.org/0000000173808930</orcidid><orcidid>https://orcid.org/0000000227147737</orcidid><orcidid>https://orcid.org/0000000283060994</orcidid><orcidid>https://orcid.org/000000029131638X</orcidid><orcidid>https://orcid.org/0000000243397437</orcidid><orcidid>https://orcid.org/0000000348218669</orcidid><orcidid>https://orcid.org/0000000160322499</orcidid><orcidid>https://orcid.org/000000030536907X</orcidid></search><sort><creationdate>20200720</creationdate><title>Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface</title><author>Colombara, Diego ; Elanzeery, Hossam ; Nicoara, Nicoleta ; Sharma, Deepanjan ; Claro, Marcel ; Schwarz, Torsten ; Koprek, Anna ; Wolter, Max Hilaire ; Melchiorre, Michele ; Sood, Mohit ; Valle, Nathalie ; Bondarchuk, Oleksandr ; Babbe, Finn ; Spindler, Conrad ; Cojocaru-Miredin, Oana ; Raabe, Dierk ; Dale, Phillip J. ; Sadewasser, Sascha ; Siebentritt, Susanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>147/135</topic><topic>147/136</topic><topic>147/28</topic><topic>147/3</topic><topic>639/638/161</topic><topic>639/638/263</topic><topic>639/638/549</topic><topic>639/638/675</topic><topic>639/638/911</topic><topic>Anions</topic><topic>Chalcogenides</topic><topic>Chalcopyrite</topic><topic>Chemical synthesis</topic><topic>Chemical treatment</topic><topic>Coordination chemistry</topic><topic>Copper indium selenides</topic><topic>Cyanides</topic><topic>Electrochemistry</topic><topic>Electronics industry</topic><topic>Energy</topic><topic>Etching</topic><topic>Humanities and Social Sciences</topic><topic>Inorganic chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Material properties</topic><topic>multidisciplinary</topic><topic>Optoelectronic devices</topic><topic>Oxidation</topic><topic>Performance enhancement</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Point defects</topic><topic>Post-production processing</topic><topic>Room temperature</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Selenium</topic><topic>Semiconductors</topic><topic>Solar cells</topic><topic>Surface stability</topic><topic>Topological insulators</topic><topic>Topology</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colombara, Diego</creatorcontrib><creatorcontrib>Elanzeery, Hossam</creatorcontrib><creatorcontrib>Nicoara, Nicoleta</creatorcontrib><creatorcontrib>Sharma, Deepanjan</creatorcontrib><creatorcontrib>Claro, Marcel</creatorcontrib><creatorcontrib>Schwarz, Torsten</creatorcontrib><creatorcontrib>Koprek, Anna</creatorcontrib><creatorcontrib>Wolter, Max Hilaire</creatorcontrib><creatorcontrib>Melchiorre, Michele</creatorcontrib><creatorcontrib>Sood, Mohit</creatorcontrib><creatorcontrib>Valle, Nathalie</creatorcontrib><creatorcontrib>Bondarchuk, Oleksandr</creatorcontrib><creatorcontrib>Babbe, Finn</creatorcontrib><creatorcontrib>Spindler, Conrad</creatorcontrib><creatorcontrib>Cojocaru-Miredin, Oana</creatorcontrib><creatorcontrib>Raabe, Dierk</creatorcontrib><creatorcontrib>Dale, Phillip J.</creatorcontrib><creatorcontrib>Sadewasser, Sascha</creatorcontrib><creatorcontrib>Siebentritt, Susanne</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colombara, Diego</au><au>Elanzeery, Hossam</au><au>Nicoara, Nicoleta</au><au>Sharma, Deepanjan</au><au>Claro, Marcel</au><au>Schwarz, Torsten</au><au>Koprek, Anna</au><au>Wolter, Max Hilaire</au><au>Melchiorre, Michele</au><au>Sood, Mohit</au><au>Valle, Nathalie</au><au>Bondarchuk, Oleksandr</au><au>Babbe, Finn</au><au>Spindler, Conrad</au><au>Cojocaru-Miredin, Oana</au><au>Raabe, Dierk</au><au>Dale, Phillip J.</au><au>Sadewasser, Sascha</au><au>Siebentritt, Susanne</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><date>2020-07-20</date><risdate>2020</risdate><volume>11</volume><issue>1</issue><spage>3634</spage><epage>3634</epage><pages>3634-3634</pages><artnum>3634</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The electrical and optoelectronic properties of materials are determined by the chemical potentials of their constituents. The relative density of point defects is thus controlled, allowing to craft microstructure, trap densities and doping levels. Here, we show that the chemical potentials of chalcogenide materials near the edge of their existence region are not only determined during growth but also at room temperature by post-processing. In particular, we study the generation of anion vacancies, which are critical defects in chalcogenide semiconductors and topological insulators. The example of CuInSe 2 photovoltaic semiconductor reveals that single phase material crosses the phase boundary and forms surface secondary phases upon oxidation, thereby creating anion vacancies. The arising metastable point defect population explains a common root cause of performance losses. This study shows how selective defect annihilation is attained with tailored chemical treatments that mitigate anion vacancy formation and improve the performance of CuInSe 2 solar cells. Anion vacancies are a hurdle for technologies based on chalcogenide semiconductors and topological insulators. Even at room temperature, oxidation and cyanide etching can lead to selenium vacancies in CuInSe 2 photovoltaic material but suitable post deposition treatments can mitigate their effect.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32686684</pmid><doi>10.1038/s41467-020-17434-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0909-4635</orcidid><orcidid>https://orcid.org/0000-0003-0536-907X</orcidid><orcidid>https://orcid.org/0000-0001-8384-6025</orcidid><orcidid>https://orcid.org/0000-0001-7380-8930</orcidid><orcidid>https://orcid.org/0000-0002-4339-7437</orcidid><orcidid>https://orcid.org/0000-0001-6032-2499</orcidid><orcidid>https://orcid.org/0000-0002-2714-7737</orcidid><orcidid>https://orcid.org/0000-0002-9131-638X</orcidid><orcidid>https://orcid.org/0000-0003-4821-8669</orcidid><orcidid>https://orcid.org/0000-0002-8306-0994</orcidid><orcidid>https://orcid.org/0000000183846025</orcidid><orcidid>https://orcid.org/0000000209094635</orcidid><orcidid>https://orcid.org/0000000173808930</orcidid><orcidid>https://orcid.org/0000000227147737</orcidid><orcidid>https://orcid.org/0000000283060994</orcidid><orcidid>https://orcid.org/000000029131638X</orcidid><orcidid>https://orcid.org/0000000243397437</orcidid><orcidid>https://orcid.org/0000000348218669</orcidid><orcidid>https://orcid.org/0000000160322499</orcidid><orcidid>https://orcid.org/000000030536907X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2020-07, Vol.11 (1), p.3634-3634, Article 3634
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0226f4669b2b4f8287fc6607b094f0aa
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); NCBI_PubMed Central(免费); Nature; Springer Nature - nature.com Journals - Fully Open Access
subjects 147/135
147/136
147/28
147/3
639/638/161
639/638/263
639/638/549
639/638/675
639/638/911
Anions
Chalcogenides
Chalcopyrite
Chemical synthesis
Chemical treatment
Coordination chemistry
Copper indium selenides
Cyanides
Electrochemistry
Electronics industry
Energy
Etching
Humanities and Social Sciences
Inorganic chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Material properties
multidisciplinary
Optoelectronic devices
Oxidation
Performance enhancement
Photovoltaic cells
Photovoltaics
Point defects
Post-production processing
Room temperature
Science
Science (multidisciplinary)
Selenium
Semiconductors
Solar cells
Surface stability
Topological insulators
Topology
Vacancies
title Chemical instability at chalcogenide surfaces impacts chalcopyrite devices well beyond the surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A18%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20instability%20at%20chalcogenide%20surfaces%20impacts%20chalcopyrite%20devices%20well%20beyond%20the%20surface&rft.jtitle=Nature%20communications&rft.au=Colombara,%20Diego&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-07-20&rft.volume=11&rft.issue=1&rft.spage=3634&rft.epage=3634&rft.pages=3634-3634&rft.artnum=3634&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-020-17434-8&rft_dat=%3Cproquest_doaj_%3E2425423042%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c544t-7c677add6763f4c973cc193bc76a98c57e4ca32672dbf9d2132b43735a237ae33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2425423042&rft_id=info:pmid/32686684&rfr_iscdi=true