Loading…
Scenarios for Optical Encryption Using Quantum Keys
Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for opti...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2024-10, Vol.24 (20), p.6631 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753 |
container_end_page | |
container_issue | 20 |
container_start_page | 6631 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 24 |
creator | Velasco, Luis Ahmadian, Morteza Ortiz, Laura Brito, Juan P Pastor, Antonio Rivas, Jose M Barzegar, Sima Comellas, Jaume Martin, Vicente Ruiz, Marc |
description | Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for optical transmission that leverages stream ciphers and Diffie-Hellman (DH) key exchange for high-speed optical encryption. Still, LPSec faces limitations related to key generation and key distribution. To address these limitations, in this paper, we rely on Quantum Random Number Generators (QRNG) and Quantum Key Distribution (QKD) networks. Specifically, we focus on three meaningful scenarios: In Scenario A, the two optical transponders (Tp) involved in the optical transmission are within the security perimeter of the QKD network. In Scenario B, only one Tp is within the QKD network, so keys are retrieved from a QRNG and distributed using LPSec. Finally, Scenario C extends Scenario B by employing Post-Quantum Cryptography (PQC) by implementing a Key Encapsulation Mechanism (KEM) to secure key exchanges. The scenarios are analyzed based on their security, efficiency, and applicability, demonstrating the potential of quantum-enhanced LPSec to provide secure, low-latency encryption for current optical communications. The experimental assessment, conducted on the Madrid Quantum Infrastructure, validates the feasibility of the proposed solutions. |
doi_str_mv | 10.3390/s24206631 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02284fc8e7824833b495c9c2212de242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814418079</galeid><doaj_id>oai_doaj_org_article_02284fc8e7824833b495c9c2212de242</doaj_id><sourcerecordid>A814418079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753</originalsourceid><addsrcrecordid>eNpdklFvFCEQxzdGY2v1wS9gNvFFH67CAAv7ZJqmamOTxtQ-E2Bn77jswgm3Nfft5dx66RkemAx_fsz8map6S8k5Yy35lIEDaRpGn1WnlANfKADy_El8Ur3KeU0IMMbUy-qEtbwhlNLTit05DCb5mOs-pvp2s_XODPVVcGlX4hjq--zDsv4xmbCdxvo77vLr6kVvhoxvHvez6v7L1c_Lb4ub26_Xlxc3C8el2C4sOGstY46yxirXQS9F03TW9JwrLhpQ2EkkHJGBdUq01AppKLdKig6lYGfV9cztolnrTfKjSTsdjdd_EzEttUml3gE1AVC8dwqlAq4Ys7wVrnUAFDos7hTW3czKv3Ez2SNawowmuZV2KzOMmLLOqFsJSkhptehaq7mQThvDGq2MAwJEmL5jhfp5phbkiF2xcpvMcAQ_Pgl-pZfxQVMqKFGCF8KHR0KKvybMWz367HAYTMA4Zc0oUNKUbtoiff-fdB2nFMoP7FVEckWoLKrzWbU0xRcf-lgedmV1OHoXA_a-5C8U5ZwqIvfYj_MFl2LOCftD-ZTo_Xjpw3gV7bun_R6U_-aJ_QHMPMeU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120748017</pqid></control><display><type>article</type><title>Scenarios for Optical Encryption Using Quantum Keys</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Velasco, Luis ; Ahmadian, Morteza ; Ortiz, Laura ; Brito, Juan P ; Pastor, Antonio ; Rivas, Jose M ; Barzegar, Sima ; Comellas, Jaume ; Martin, Vicente ; Ruiz, Marc</creator><creatorcontrib>Velasco, Luis ; Ahmadian, Morteza ; Ortiz, Laura ; Brito, Juan P ; Pastor, Antonio ; Rivas, Jose M ; Barzegar, Sima ; Comellas, Jaume ; Martin, Vicente ; Ruiz, Marc</creatorcontrib><description>Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for optical transmission that leverages stream ciphers and Diffie-Hellman (DH) key exchange for high-speed optical encryption. Still, LPSec faces limitations related to key generation and key distribution. To address these limitations, in this paper, we rely on Quantum Random Number Generators (QRNG) and Quantum Key Distribution (QKD) networks. Specifically, we focus on three meaningful scenarios: In Scenario A, the two optical transponders (Tp) involved in the optical transmission are within the security perimeter of the QKD network. In Scenario B, only one Tp is within the QKD network, so keys are retrieved from a QRNG and distributed using LPSec. Finally, Scenario C extends Scenario B by employing Post-Quantum Cryptography (PQC) by implementing a Key Encapsulation Mechanism (KEM) to secure key exchanges. The scenarios are analyzed based on their security, efficiency, and applicability, demonstrating the potential of quantum-enhanced LPSec to provide secure, low-latency encryption for current optical communications. The experimental assessment, conducted on the Madrid Quantum Infrastructure, validates the feasibility of the proposed solutions.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24206631</identifier><identifier>PMID: 39460111</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Cryptography ; Data encryption ; Data security ; Infrastructure ; Investment analysis ; optical encryption ; Post-Quantum Cryptography ; Quantum computing ; Quantum Key Distribution ; Quantum Random Number Generator</subject><ispartof>Sensors (Basel, Switzerland), 2024-10, Vol.24 (20), p.6631</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753</cites><orcidid>0000-0003-2849-9782 ; 0000-0002-7345-296X ; 0000-0001-6429-6347 ; 0000-0003-1916-7217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120748017/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120748017?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39460111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/543559$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Velasco, Luis</creatorcontrib><creatorcontrib>Ahmadian, Morteza</creatorcontrib><creatorcontrib>Ortiz, Laura</creatorcontrib><creatorcontrib>Brito, Juan P</creatorcontrib><creatorcontrib>Pastor, Antonio</creatorcontrib><creatorcontrib>Rivas, Jose M</creatorcontrib><creatorcontrib>Barzegar, Sima</creatorcontrib><creatorcontrib>Comellas, Jaume</creatorcontrib><creatorcontrib>Martin, Vicente</creatorcontrib><creatorcontrib>Ruiz, Marc</creatorcontrib><title>Scenarios for Optical Encryption Using Quantum Keys</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for optical transmission that leverages stream ciphers and Diffie-Hellman (DH) key exchange for high-speed optical encryption. Still, LPSec faces limitations related to key generation and key distribution. To address these limitations, in this paper, we rely on Quantum Random Number Generators (QRNG) and Quantum Key Distribution (QKD) networks. Specifically, we focus on three meaningful scenarios: In Scenario A, the two optical transponders (Tp) involved in the optical transmission are within the security perimeter of the QKD network. In Scenario B, only one Tp is within the QKD network, so keys are retrieved from a QRNG and distributed using LPSec. Finally, Scenario C extends Scenario B by employing Post-Quantum Cryptography (PQC) by implementing a Key Encapsulation Mechanism (KEM) to secure key exchanges. The scenarios are analyzed based on their security, efficiency, and applicability, demonstrating the potential of quantum-enhanced LPSec to provide secure, low-latency encryption for current optical communications. The experimental assessment, conducted on the Madrid Quantum Infrastructure, validates the feasibility of the proposed solutions.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Data encryption</subject><subject>Data security</subject><subject>Infrastructure</subject><subject>Investment analysis</subject><subject>optical encryption</subject><subject>Post-Quantum Cryptography</subject><subject>Quantum computing</subject><subject>Quantum Key Distribution</subject><subject>Quantum Random Number Generator</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdklFvFCEQxzdGY2v1wS9gNvFFH67CAAv7ZJqmamOTxtQ-E2Bn77jswgm3Nfft5dx66RkemAx_fsz8map6S8k5Yy35lIEDaRpGn1WnlANfKADy_El8Ur3KeU0IMMbUy-qEtbwhlNLTit05DCb5mOs-pvp2s_XODPVVcGlX4hjq--zDsv4xmbCdxvo77vLr6kVvhoxvHvez6v7L1c_Lb4ub26_Xlxc3C8el2C4sOGstY46yxirXQS9F03TW9JwrLhpQ2EkkHJGBdUq01AppKLdKig6lYGfV9cztolnrTfKjSTsdjdd_EzEttUml3gE1AVC8dwqlAq4Ys7wVrnUAFDos7hTW3czKv3Ez2SNawowmuZV2KzOMmLLOqFsJSkhptehaq7mQThvDGq2MAwJEmL5jhfp5phbkiF2xcpvMcAQ_Pgl-pZfxQVMqKFGCF8KHR0KKvybMWz367HAYTMA4Zc0oUNKUbtoiff-fdB2nFMoP7FVEckWoLKrzWbU0xRcf-lgedmV1OHoXA_a-5C8U5ZwqIvfYj_MFl2LOCftD-ZTo_Xjpw3gV7bun_R6U_-aJ_QHMPMeU</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Velasco, Luis</creator><creator>Ahmadian, Morteza</creator><creator>Ortiz, Laura</creator><creator>Brito, Juan P</creator><creator>Pastor, Antonio</creator><creator>Rivas, Jose M</creator><creator>Barzegar, Sima</creator><creator>Comellas, Jaume</creator><creator>Martin, Vicente</creator><creator>Ruiz, Marc</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2849-9782</orcidid><orcidid>https://orcid.org/0000-0002-7345-296X</orcidid><orcidid>https://orcid.org/0000-0001-6429-6347</orcidid><orcidid>https://orcid.org/0000-0003-1916-7217</orcidid></search><sort><creationdate>20241015</creationdate><title>Scenarios for Optical Encryption Using Quantum Keys</title><author>Velasco, Luis ; Ahmadian, Morteza ; Ortiz, Laura ; Brito, Juan P ; Pastor, Antonio ; Rivas, Jose M ; Barzegar, Sima ; Comellas, Jaume ; Martin, Vicente ; Ruiz, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Data encryption</topic><topic>Data security</topic><topic>Infrastructure</topic><topic>Investment analysis</topic><topic>optical encryption</topic><topic>Post-Quantum Cryptography</topic><topic>Quantum computing</topic><topic>Quantum Key Distribution</topic><topic>Quantum Random Number Generator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velasco, Luis</creatorcontrib><creatorcontrib>Ahmadian, Morteza</creatorcontrib><creatorcontrib>Ortiz, Laura</creatorcontrib><creatorcontrib>Brito, Juan P</creatorcontrib><creatorcontrib>Pastor, Antonio</creatorcontrib><creatorcontrib>Rivas, Jose M</creatorcontrib><creatorcontrib>Barzegar, Sima</creatorcontrib><creatorcontrib>Comellas, Jaume</creatorcontrib><creatorcontrib>Martin, Vicente</creatorcontrib><creatorcontrib>Ruiz, Marc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velasco, Luis</au><au>Ahmadian, Morteza</au><au>Ortiz, Laura</au><au>Brito, Juan P</au><au>Pastor, Antonio</au><au>Rivas, Jose M</au><au>Barzegar, Sima</au><au>Comellas, Jaume</au><au>Martin, Vicente</au><au>Ruiz, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenarios for Optical Encryption Using Quantum Keys</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>6631</spage><pages>6631-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for optical transmission that leverages stream ciphers and Diffie-Hellman (DH) key exchange for high-speed optical encryption. Still, LPSec faces limitations related to key generation and key distribution. To address these limitations, in this paper, we rely on Quantum Random Number Generators (QRNG) and Quantum Key Distribution (QKD) networks. Specifically, we focus on three meaningful scenarios: In Scenario A, the two optical transponders (Tp) involved in the optical transmission are within the security perimeter of the QKD network. In Scenario B, only one Tp is within the QKD network, so keys are retrieved from a QRNG and distributed using LPSec. Finally, Scenario C extends Scenario B by employing Post-Quantum Cryptography (PQC) by implementing a Key Encapsulation Mechanism (KEM) to secure key exchanges. The scenarios are analyzed based on their security, efficiency, and applicability, demonstrating the potential of quantum-enhanced LPSec to provide secure, low-latency encryption for current optical communications. The experimental assessment, conducted on the Madrid Quantum Infrastructure, validates the feasibility of the proposed solutions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39460111</pmid><doi>10.3390/s24206631</doi><orcidid>https://orcid.org/0000-0003-2849-9782</orcidid><orcidid>https://orcid.org/0000-0002-7345-296X</orcidid><orcidid>https://orcid.org/0000-0001-6429-6347</orcidid><orcidid>https://orcid.org/0000-0003-1916-7217</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2024-10, Vol.24 (20), p.6631 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_02284fc8e7824833b495c9c2212de242 |
source | Publicly Available Content Database; PubMed Central |
subjects | Algorithms Cryptography Data encryption Data security Infrastructure Investment analysis optical encryption Post-Quantum Cryptography Quantum computing Quantum Key Distribution Quantum Random Number Generator |
title | Scenarios for Optical Encryption Using Quantum Keys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenarios%20for%20Optical%20Encryption%20Using%20Quantum%20Keys&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Velasco,%20Luis&rft.date=2024-10-15&rft.volume=24&rft.issue=20&rft.spage=6631&rft.pages=6631-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24206631&rft_dat=%3Cgale_doaj_%3EA814418079%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120748017&rft_id=info:pmid/39460111&rft_galeid=A814418079&rfr_iscdi=true |