Loading…

Scenarios for Optical Encryption Using Quantum Keys

Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for opti...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2024-10, Vol.24 (20), p.6631
Main Authors: Velasco, Luis, Ahmadian, Morteza, Ortiz, Laura, Brito, Juan P, Pastor, Antonio, Rivas, Jose M, Barzegar, Sima, Comellas, Jaume, Martin, Vicente, Ruiz, Marc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753
container_end_page
container_issue 20
container_start_page 6631
container_title Sensors (Basel, Switzerland)
container_volume 24
creator Velasco, Luis
Ahmadian, Morteza
Ortiz, Laura
Brito, Juan P
Pastor, Antonio
Rivas, Jose M
Barzegar, Sima
Comellas, Jaume
Martin, Vicente
Ruiz, Marc
description Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for optical transmission that leverages stream ciphers and Diffie-Hellman (DH) key exchange for high-speed optical encryption. Still, LPSec faces limitations related to key generation and key distribution. To address these limitations, in this paper, we rely on Quantum Random Number Generators (QRNG) and Quantum Key Distribution (QKD) networks. Specifically, we focus on three meaningful scenarios: In Scenario A, the two optical transponders (Tp) involved in the optical transmission are within the security perimeter of the QKD network. In Scenario B, only one Tp is within the QKD network, so keys are retrieved from a QRNG and distributed using LPSec. Finally, Scenario C extends Scenario B by employing Post-Quantum Cryptography (PQC) by implementing a Key Encapsulation Mechanism (KEM) to secure key exchanges. The scenarios are analyzed based on their security, efficiency, and applicability, demonstrating the potential of quantum-enhanced LPSec to provide secure, low-latency encryption for current optical communications. The experimental assessment, conducted on the Madrid Quantum Infrastructure, validates the feasibility of the proposed solutions.
doi_str_mv 10.3390/s24206631
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02284fc8e7824833b495c9c2212de242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814418079</galeid><doaj_id>oai_doaj_org_article_02284fc8e7824833b495c9c2212de242</doaj_id><sourcerecordid>A814418079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753</originalsourceid><addsrcrecordid>eNpdklFvFCEQxzdGY2v1wS9gNvFFH67CAAv7ZJqmamOTxtQ-E2Bn77jswgm3Nfft5dx66RkemAx_fsz8map6S8k5Yy35lIEDaRpGn1WnlANfKADy_El8Ur3KeU0IMMbUy-qEtbwhlNLTit05DCb5mOs-pvp2s_XODPVVcGlX4hjq--zDsv4xmbCdxvo77vLr6kVvhoxvHvez6v7L1c_Lb4ub26_Xlxc3C8el2C4sOGstY46yxirXQS9F03TW9JwrLhpQ2EkkHJGBdUq01AppKLdKig6lYGfV9cztolnrTfKjSTsdjdd_EzEttUml3gE1AVC8dwqlAq4Ys7wVrnUAFDos7hTW3czKv3Ez2SNawowmuZV2KzOMmLLOqFsJSkhptehaq7mQThvDGq2MAwJEmL5jhfp5phbkiF2xcpvMcAQ_Pgl-pZfxQVMqKFGCF8KHR0KKvybMWz367HAYTMA4Zc0oUNKUbtoiff-fdB2nFMoP7FVEckWoLKrzWbU0xRcf-lgedmV1OHoXA_a-5C8U5ZwqIvfYj_MFl2LOCftD-ZTo_Xjpw3gV7bun_R6U_-aJ_QHMPMeU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120748017</pqid></control><display><type>article</type><title>Scenarios for Optical Encryption Using Quantum Keys</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Velasco, Luis ; Ahmadian, Morteza ; Ortiz, Laura ; Brito, Juan P ; Pastor, Antonio ; Rivas, Jose M ; Barzegar, Sima ; Comellas, Jaume ; Martin, Vicente ; Ruiz, Marc</creator><creatorcontrib>Velasco, Luis ; Ahmadian, Morteza ; Ortiz, Laura ; Brito, Juan P ; Pastor, Antonio ; Rivas, Jose M ; Barzegar, Sima ; Comellas, Jaume ; Martin, Vicente ; Ruiz, Marc</creatorcontrib><description>Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for optical transmission that leverages stream ciphers and Diffie-Hellman (DH) key exchange for high-speed optical encryption. Still, LPSec faces limitations related to key generation and key distribution. To address these limitations, in this paper, we rely on Quantum Random Number Generators (QRNG) and Quantum Key Distribution (QKD) networks. Specifically, we focus on three meaningful scenarios: In Scenario A, the two optical transponders (Tp) involved in the optical transmission are within the security perimeter of the QKD network. In Scenario B, only one Tp is within the QKD network, so keys are retrieved from a QRNG and distributed using LPSec. Finally, Scenario C extends Scenario B by employing Post-Quantum Cryptography (PQC) by implementing a Key Encapsulation Mechanism (KEM) to secure key exchanges. The scenarios are analyzed based on their security, efficiency, and applicability, demonstrating the potential of quantum-enhanced LPSec to provide secure, low-latency encryption for current optical communications. The experimental assessment, conducted on the Madrid Quantum Infrastructure, validates the feasibility of the proposed solutions.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s24206631</identifier><identifier>PMID: 39460111</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Algorithms ; Cryptography ; Data encryption ; Data security ; Infrastructure ; Investment analysis ; optical encryption ; Post-Quantum Cryptography ; Quantum computing ; Quantum Key Distribution ; Quantum Random Number Generator</subject><ispartof>Sensors (Basel, Switzerland), 2024-10, Vol.24 (20), p.6631</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753</cites><orcidid>0000-0003-2849-9782 ; 0000-0002-7345-296X ; 0000-0001-6429-6347 ; 0000-0003-1916-7217</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120748017/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120748017?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39460111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://research.chalmers.se/publication/543559$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Velasco, Luis</creatorcontrib><creatorcontrib>Ahmadian, Morteza</creatorcontrib><creatorcontrib>Ortiz, Laura</creatorcontrib><creatorcontrib>Brito, Juan P</creatorcontrib><creatorcontrib>Pastor, Antonio</creatorcontrib><creatorcontrib>Rivas, Jose M</creatorcontrib><creatorcontrib>Barzegar, Sima</creatorcontrib><creatorcontrib>Comellas, Jaume</creatorcontrib><creatorcontrib>Martin, Vicente</creatorcontrib><creatorcontrib>Ruiz, Marc</creatorcontrib><title>Scenarios for Optical Encryption Using Quantum Keys</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for optical transmission that leverages stream ciphers and Diffie-Hellman (DH) key exchange for high-speed optical encryption. Still, LPSec faces limitations related to key generation and key distribution. To address these limitations, in this paper, we rely on Quantum Random Number Generators (QRNG) and Quantum Key Distribution (QKD) networks. Specifically, we focus on three meaningful scenarios: In Scenario A, the two optical transponders (Tp) involved in the optical transmission are within the security perimeter of the QKD network. In Scenario B, only one Tp is within the QKD network, so keys are retrieved from a QRNG and distributed using LPSec. Finally, Scenario C extends Scenario B by employing Post-Quantum Cryptography (PQC) by implementing a Key Encapsulation Mechanism (KEM) to secure key exchanges. The scenarios are analyzed based on their security, efficiency, and applicability, demonstrating the potential of quantum-enhanced LPSec to provide secure, low-latency encryption for current optical communications. The experimental assessment, conducted on the Madrid Quantum Infrastructure, validates the feasibility of the proposed solutions.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Data encryption</subject><subject>Data security</subject><subject>Infrastructure</subject><subject>Investment analysis</subject><subject>optical encryption</subject><subject>Post-Quantum Cryptography</subject><subject>Quantum computing</subject><subject>Quantum Key Distribution</subject><subject>Quantum Random Number Generator</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdklFvFCEQxzdGY2v1wS9gNvFFH67CAAv7ZJqmamOTxtQ-E2Bn77jswgm3Nfft5dx66RkemAx_fsz8map6S8k5Yy35lIEDaRpGn1WnlANfKADy_El8Ur3KeU0IMMbUy-qEtbwhlNLTit05DCb5mOs-pvp2s_XODPVVcGlX4hjq--zDsv4xmbCdxvo77vLr6kVvhoxvHvez6v7L1c_Lb4ub26_Xlxc3C8el2C4sOGstY46yxirXQS9F03TW9JwrLhpQ2EkkHJGBdUq01AppKLdKig6lYGfV9cztolnrTfKjSTsdjdd_EzEttUml3gE1AVC8dwqlAq4Ys7wVrnUAFDos7hTW3czKv3Ez2SNawowmuZV2KzOMmLLOqFsJSkhptehaq7mQThvDGq2MAwJEmL5jhfp5phbkiF2xcpvMcAQ_Pgl-pZfxQVMqKFGCF8KHR0KKvybMWz367HAYTMA4Zc0oUNKUbtoiff-fdB2nFMoP7FVEckWoLKrzWbU0xRcf-lgedmV1OHoXA_a-5C8U5ZwqIvfYj_MFl2LOCftD-ZTo_Xjpw3gV7bun_R6U_-aJ_QHMPMeU</recordid><startdate>20241015</startdate><enddate>20241015</enddate><creator>Velasco, Luis</creator><creator>Ahmadian, Morteza</creator><creator>Ortiz, Laura</creator><creator>Brito, Juan P</creator><creator>Pastor, Antonio</creator><creator>Rivas, Jose M</creator><creator>Barzegar, Sima</creator><creator>Comellas, Jaume</creator><creator>Martin, Vicente</creator><creator>Ruiz, Marc</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2849-9782</orcidid><orcidid>https://orcid.org/0000-0002-7345-296X</orcidid><orcidid>https://orcid.org/0000-0001-6429-6347</orcidid><orcidid>https://orcid.org/0000-0003-1916-7217</orcidid></search><sort><creationdate>20241015</creationdate><title>Scenarios for Optical Encryption Using Quantum Keys</title><author>Velasco, Luis ; Ahmadian, Morteza ; Ortiz, Laura ; Brito, Juan P ; Pastor, Antonio ; Rivas, Jose M ; Barzegar, Sima ; Comellas, Jaume ; Martin, Vicente ; Ruiz, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Data encryption</topic><topic>Data security</topic><topic>Infrastructure</topic><topic>Investment analysis</topic><topic>optical encryption</topic><topic>Post-Quantum Cryptography</topic><topic>Quantum computing</topic><topic>Quantum Key Distribution</topic><topic>Quantum Random Number Generator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velasco, Luis</creatorcontrib><creatorcontrib>Ahmadian, Morteza</creatorcontrib><creatorcontrib>Ortiz, Laura</creatorcontrib><creatorcontrib>Brito, Juan P</creatorcontrib><creatorcontrib>Pastor, Antonio</creatorcontrib><creatorcontrib>Rivas, Jose M</creatorcontrib><creatorcontrib>Barzegar, Sima</creatorcontrib><creatorcontrib>Comellas, Jaume</creatorcontrib><creatorcontrib>Martin, Vicente</creatorcontrib><creatorcontrib>Ruiz, Marc</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velasco, Luis</au><au>Ahmadian, Morteza</au><au>Ortiz, Laura</au><au>Brito, Juan P</au><au>Pastor, Antonio</au><au>Rivas, Jose M</au><au>Barzegar, Sima</au><au>Comellas, Jaume</au><au>Martin, Vicente</au><au>Ruiz, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scenarios for Optical Encryption Using Quantum Keys</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2024-10-15</date><risdate>2024</risdate><volume>24</volume><issue>20</issue><spage>6631</spage><pages>6631-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Optical communications providing huge capacity and low latency remain vulnerable to a range of attacks. In consequence, encryption at the optical layer is needed to ensure secure data transmission. In our previous work, we proposed LightPath SECurity (LPSec), a secure cryptographic solution for optical transmission that leverages stream ciphers and Diffie-Hellman (DH) key exchange for high-speed optical encryption. Still, LPSec faces limitations related to key generation and key distribution. To address these limitations, in this paper, we rely on Quantum Random Number Generators (QRNG) and Quantum Key Distribution (QKD) networks. Specifically, we focus on three meaningful scenarios: In Scenario A, the two optical transponders (Tp) involved in the optical transmission are within the security perimeter of the QKD network. In Scenario B, only one Tp is within the QKD network, so keys are retrieved from a QRNG and distributed using LPSec. Finally, Scenario C extends Scenario B by employing Post-Quantum Cryptography (PQC) by implementing a Key Encapsulation Mechanism (KEM) to secure key exchanges. The scenarios are analyzed based on their security, efficiency, and applicability, demonstrating the potential of quantum-enhanced LPSec to provide secure, low-latency encryption for current optical communications. The experimental assessment, conducted on the Madrid Quantum Infrastructure, validates the feasibility of the proposed solutions.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39460111</pmid><doi>10.3390/s24206631</doi><orcidid>https://orcid.org/0000-0003-2849-9782</orcidid><orcidid>https://orcid.org/0000-0002-7345-296X</orcidid><orcidid>https://orcid.org/0000-0001-6429-6347</orcidid><orcidid>https://orcid.org/0000-0003-1916-7217</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2024-10, Vol.24 (20), p.6631
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_02284fc8e7824833b495c9c2212de242
source Publicly Available Content Database; PubMed Central
subjects Algorithms
Cryptography
Data encryption
Data security
Infrastructure
Investment analysis
optical encryption
Post-Quantum Cryptography
Quantum computing
Quantum Key Distribution
Quantum Random Number Generator
title Scenarios for Optical Encryption Using Quantum Keys
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scenarios%20for%20Optical%20Encryption%20Using%20Quantum%20Keys&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Velasco,%20Luis&rft.date=2024-10-15&rft.volume=24&rft.issue=20&rft.spage=6631&rft.pages=6631-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s24206631&rft_dat=%3Cgale_doaj_%3EA814418079%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-b2cbbb33c136b8cd2f7566dbaf44845628ed7e04ee32bc8591b57a14b875de753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120748017&rft_id=info:pmid/39460111&rft_galeid=A814418079&rfr_iscdi=true