Loading…

From macro to micro: Bioinspired designs for tougher ceramics

Ceramic materials, while strong, often lack flexibility and energy absorption. Inspired by tough natural structures like nacre, toughening strategies have shown significant potential in ceramic materials. This study investigates the static and cyclic flexural properties (i.e., energy absorption, sti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research and technology 2024-07, Vol.31, p.3310-3319
Main Authors: Azad, E., Yazdani Sarvestani, H., Ashrafi, B., Shadmehri, F., Hojjati, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c291t-524beab2c73d8b0d9963f31b0d3378e1c397f98f8359dad1fe8939b70160b00c3
container_end_page 3319
container_issue
container_start_page 3310
container_title Journal of materials research and technology
container_volume 31
creator Azad, E.
Yazdani Sarvestani, H.
Ashrafi, B.
Shadmehri, F.
Hojjati, M.
description Ceramic materials, while strong, often lack flexibility and energy absorption. Inspired by tough natural structures like nacre, toughening strategies have shown significant potential in ceramic materials. This study investigates the static and cyclic flexural properties (i.e., energy absorption, stiffness, and strength) of the bioinspired ceramic-polymer composites, particularly concerning the influence of macro and micro patterns. Using a subtractive manufacturing platform enabled by ultra-short pulsed picosecond lasers, we engrave a range of macro and micro patterns onto alumina tiles, mimicking natural armor designs. The composites are then fabricated by stacking laser-engraved tiles with an interlayer of Surlyn®, a commercial monomer. The results demonstrate that the static/cyclic performance and toughening mechanisms are closely linked to the lasered bioinspired surface patterns and stacking sequence. Specific macro architectures and stacking sequences led to significantly increased energy absorption (up to 85%) through mechanisms like crack deflection and plastic deformation of the soft phase. Micro patterns, on the other hand, improved the ceramic's strength (up to 140%) by influencing how the materials interact at the interface. This research not only advances our understanding of bioinspired armor but also paves the way for a new generation of ceramic composites with superior properties, targeting applications in defense (aerospace and vehicle armor) and personal protective equipment (PPE). [Display omitted] •Investigating static/cyclic flexural properties of bioinspired ceramic-polymer composites.•Engraving macro and micro patterns using ultra-short pulsed picosecond lasers.•Enhancing energy absorption (up to 85%) and ceramic strength (up to 140%).•Advancing understanding of natural protective shield designs for advanced materials.
doi_str_mv 10.1016/j.jmrt.2024.07.019
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_022f8bdc7ee7402a87edbe87f9c11c65</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2238785424015722</els_id><doaj_id>oai_doaj_org_article_022f8bdc7ee7402a87edbe87f9c11c65</doaj_id><sourcerecordid>S2238785424015722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-524beab2c73d8b0d9963f31b0d3378e1c397f98f8359dad1fe8939b70160b00c3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRbMAiar0AqxygYSxncQ2ggVUFCpVYgNry7HHxVFTV3ZA4va4FLFk5ZE1_2n-K4orAjUB0l0P9TDGqaZAmxp4DUSeFTNKmai4aJuLYpHSAACklR0IMivuVjGM5ahNDOUUytHn4aZ88MHv08FHtKXF5Lf7VLoQ88bH9h1jaTDqvJoui3OndwkXv--8eFs9vi6fq83L03p5v6kMlWSqWtr0qHtqOLOiBytlxxwjeWKMCySGSe6kcIK10mpLHArJZM9zIegBDJsX6xPXBj2oQ_Sjjl8qaK9-PkLcKh0nb3aogFInems4Im-AasHR9igy3xBiujaz6ImVm6YU0f3xCKijQzWoo0N1dKiAq-wwh25PIcwtPz1GlYzHvUGbHZkpn-H_i38DBcx8Rg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>From macro to micro: Bioinspired designs for tougher ceramics</title><source>Free Full-Text Journals in Chemistry</source><creator>Azad, E. ; Yazdani Sarvestani, H. ; Ashrafi, B. ; Shadmehri, F. ; Hojjati, M.</creator><creatorcontrib>Azad, E. ; Yazdani Sarvestani, H. ; Ashrafi, B. ; Shadmehri, F. ; Hojjati, M.</creatorcontrib><description>Ceramic materials, while strong, often lack flexibility and energy absorption. Inspired by tough natural structures like nacre, toughening strategies have shown significant potential in ceramic materials. This study investigates the static and cyclic flexural properties (i.e., energy absorption, stiffness, and strength) of the bioinspired ceramic-polymer composites, particularly concerning the influence of macro and micro patterns. Using a subtractive manufacturing platform enabled by ultra-short pulsed picosecond lasers, we engrave a range of macro and micro patterns onto alumina tiles, mimicking natural armor designs. The composites are then fabricated by stacking laser-engraved tiles with an interlayer of Surlyn®, a commercial monomer. The results demonstrate that the static/cyclic performance and toughening mechanisms are closely linked to the lasered bioinspired surface patterns and stacking sequence. Specific macro architectures and stacking sequences led to significantly increased energy absorption (up to 85%) through mechanisms like crack deflection and plastic deformation of the soft phase. Micro patterns, on the other hand, improved the ceramic's strength (up to 140%) by influencing how the materials interact at the interface. This research not only advances our understanding of bioinspired armor but also paves the way for a new generation of ceramic composites with superior properties, targeting applications in defense (aerospace and vehicle armor) and personal protective equipment (PPE). [Display omitted] •Investigating static/cyclic flexural properties of bioinspired ceramic-polymer composites.•Engraving macro and micro patterns using ultra-short pulsed picosecond lasers.•Enhancing energy absorption (up to 85%) and ceramic strength (up to 140%).•Advancing understanding of natural protective shield designs for advanced materials.</description><identifier>ISSN: 2238-7854</identifier><identifier>DOI: 10.1016/j.jmrt.2024.07.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bioinspired ceramics ; Flexural properties ; Laser engraving ; Macro and micro patterns ; Stacking sequences ; Toughening strategies</subject><ispartof>Journal of materials research and technology, 2024-07, Vol.31, p.3310-3319</ispartof><rights>2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-524beab2c73d8b0d9963f31b0d3378e1c397f98f8359dad1fe8939b70160b00c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Azad, E.</creatorcontrib><creatorcontrib>Yazdani Sarvestani, H.</creatorcontrib><creatorcontrib>Ashrafi, B.</creatorcontrib><creatorcontrib>Shadmehri, F.</creatorcontrib><creatorcontrib>Hojjati, M.</creatorcontrib><title>From macro to micro: Bioinspired designs for tougher ceramics</title><title>Journal of materials research and technology</title><description>Ceramic materials, while strong, often lack flexibility and energy absorption. Inspired by tough natural structures like nacre, toughening strategies have shown significant potential in ceramic materials. This study investigates the static and cyclic flexural properties (i.e., energy absorption, stiffness, and strength) of the bioinspired ceramic-polymer composites, particularly concerning the influence of macro and micro patterns. Using a subtractive manufacturing platform enabled by ultra-short pulsed picosecond lasers, we engrave a range of macro and micro patterns onto alumina tiles, mimicking natural armor designs. The composites are then fabricated by stacking laser-engraved tiles with an interlayer of Surlyn®, a commercial monomer. The results demonstrate that the static/cyclic performance and toughening mechanisms are closely linked to the lasered bioinspired surface patterns and stacking sequence. Specific macro architectures and stacking sequences led to significantly increased energy absorption (up to 85%) through mechanisms like crack deflection and plastic deformation of the soft phase. Micro patterns, on the other hand, improved the ceramic's strength (up to 140%) by influencing how the materials interact at the interface. This research not only advances our understanding of bioinspired armor but also paves the way for a new generation of ceramic composites with superior properties, targeting applications in defense (aerospace and vehicle armor) and personal protective equipment (PPE). [Display omitted] •Investigating static/cyclic flexural properties of bioinspired ceramic-polymer composites.•Engraving macro and micro patterns using ultra-short pulsed picosecond lasers.•Enhancing energy absorption (up to 85%) and ceramic strength (up to 140%).•Advancing understanding of natural protective shield designs for advanced materials.</description><subject>Bioinspired ceramics</subject><subject>Flexural properties</subject><subject>Laser engraving</subject><subject>Macro and micro patterns</subject><subject>Stacking sequences</subject><subject>Toughening strategies</subject><issn>2238-7854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kEFOwzAQRbMAiar0AqxygYSxncQ2ggVUFCpVYgNry7HHxVFTV3ZA4va4FLFk5ZE1_2n-K4orAjUB0l0P9TDGqaZAmxp4DUSeFTNKmai4aJuLYpHSAACklR0IMivuVjGM5ahNDOUUytHn4aZ88MHv08FHtKXF5Lf7VLoQ88bH9h1jaTDqvJoui3OndwkXv--8eFs9vi6fq83L03p5v6kMlWSqWtr0qHtqOLOiBytlxxwjeWKMCySGSe6kcIK10mpLHArJZM9zIegBDJsX6xPXBj2oQ_Sjjl8qaK9-PkLcKh0nb3aogFInems4Im-AasHR9igy3xBiujaz6ImVm6YU0f3xCKijQzWoo0N1dKiAq-wwh25PIcwtPz1GlYzHvUGbHZkpn-H_i38DBcx8Rg</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Azad, E.</creator><creator>Yazdani Sarvestani, H.</creator><creator>Ashrafi, B.</creator><creator>Shadmehri, F.</creator><creator>Hojjati, M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202407</creationdate><title>From macro to micro: Bioinspired designs for tougher ceramics</title><author>Azad, E. ; Yazdani Sarvestani, H. ; Ashrafi, B. ; Shadmehri, F. ; Hojjati, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-524beab2c73d8b0d9963f31b0d3378e1c397f98f8359dad1fe8939b70160b00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bioinspired ceramics</topic><topic>Flexural properties</topic><topic>Laser engraving</topic><topic>Macro and micro patterns</topic><topic>Stacking sequences</topic><topic>Toughening strategies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azad, E.</creatorcontrib><creatorcontrib>Yazdani Sarvestani, H.</creatorcontrib><creatorcontrib>Ashrafi, B.</creatorcontrib><creatorcontrib>Shadmehri, F.</creatorcontrib><creatorcontrib>Hojjati, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Journal of materials research and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azad, E.</au><au>Yazdani Sarvestani, H.</au><au>Ashrafi, B.</au><au>Shadmehri, F.</au><au>Hojjati, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>From macro to micro: Bioinspired designs for tougher ceramics</atitle><jtitle>Journal of materials research and technology</jtitle><date>2024-07</date><risdate>2024</risdate><volume>31</volume><spage>3310</spage><epage>3319</epage><pages>3310-3319</pages><issn>2238-7854</issn><abstract>Ceramic materials, while strong, often lack flexibility and energy absorption. Inspired by tough natural structures like nacre, toughening strategies have shown significant potential in ceramic materials. This study investigates the static and cyclic flexural properties (i.e., energy absorption, stiffness, and strength) of the bioinspired ceramic-polymer composites, particularly concerning the influence of macro and micro patterns. Using a subtractive manufacturing platform enabled by ultra-short pulsed picosecond lasers, we engrave a range of macro and micro patterns onto alumina tiles, mimicking natural armor designs. The composites are then fabricated by stacking laser-engraved tiles with an interlayer of Surlyn®, a commercial monomer. The results demonstrate that the static/cyclic performance and toughening mechanisms are closely linked to the lasered bioinspired surface patterns and stacking sequence. Specific macro architectures and stacking sequences led to significantly increased energy absorption (up to 85%) through mechanisms like crack deflection and plastic deformation of the soft phase. Micro patterns, on the other hand, improved the ceramic's strength (up to 140%) by influencing how the materials interact at the interface. This research not only advances our understanding of bioinspired armor but also paves the way for a new generation of ceramic composites with superior properties, targeting applications in defense (aerospace and vehicle armor) and personal protective equipment (PPE). [Display omitted] •Investigating static/cyclic flexural properties of bioinspired ceramic-polymer composites.•Engraving macro and micro patterns using ultra-short pulsed picosecond lasers.•Enhancing energy absorption (up to 85%) and ceramic strength (up to 140%).•Advancing understanding of natural protective shield designs for advanced materials.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmrt.2024.07.019</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2238-7854
ispartof Journal of materials research and technology, 2024-07, Vol.31, p.3310-3319
issn 2238-7854
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_022f8bdc7ee7402a87edbe87f9c11c65
source Free Full-Text Journals in Chemistry
subjects Bioinspired ceramics
Flexural properties
Laser engraving
Macro and micro patterns
Stacking sequences
Toughening strategies
title From macro to micro: Bioinspired designs for tougher ceramics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A36%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=From%20macro%20to%20micro:%20Bioinspired%20designs%20for%20tougher%20ceramics&rft.jtitle=Journal%20of%20materials%20research%20and%20technology&rft.au=Azad,%20E.&rft.date=2024-07&rft.volume=31&rft.spage=3310&rft.epage=3319&rft.pages=3310-3319&rft.issn=2238-7854&rft_id=info:doi/10.1016/j.jmrt.2024.07.019&rft_dat=%3Celsevier_doaj_%3ES2238785424015722%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-524beab2c73d8b0d9963f31b0d3378e1c397f98f8359dad1fe8939b70160b00c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true