Loading…

Valuation of deposit insurance Black–Scholes model using Banach contraction principle

Deposit insurance is a mechanism by which financial institutions are stabilized. The danger of a bank’s inability to meet its consumer commitments due to its suspended license is insured through deposit insurance practices. A flat-rate insurance scheme would contribute to moral hazard and a financia...

Full description

Saved in:
Bibliographic Details
Published in:Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters 2023-12, Vol.8, p.100571, Article 100571
Main Authors: Edeki, Sunday O., Fadugba, Sunday E., Khalique, Chaudry Masood
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2821-55116d98f6824b1171bfe12265a1f8f83050194c748f58895a529dbd6a6e8b7d3
container_end_page
container_issue
container_start_page 100571
container_title Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters
container_volume 8
creator Edeki, Sunday O.
Fadugba, Sunday E.
Khalique, Chaudry Masood
description Deposit insurance is a mechanism by which financial institutions are stabilized. The danger of a bank’s inability to meet its consumer commitments due to its suspended license is insured through deposit insurance practices. A flat-rate insurance scheme would contribute to moral hazard and a financial panic when banks indulge in dangerous practices. Hence, a reliable model with an explicit solution is required. This paper considers a risk rate model for deposit insurance engendered by the classical Black Scholes Option Pricing Model. The solutions are obtained via the application of Banach Contraction Mapping or Method. The procedures involved are straightforward, easy, and flexible, even without giving up accuracy. The desired explicit solutions are obtained with less computational time.
doi_str_mv 10.1016/j.padiff.2023.100571
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_022fdd3b2d78467fbcbc881a1d272b04</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666818123000840</els_id><doaj_id>oai_doaj_org_article_022fdd3b2d78467fbcbc881a1d272b04</doaj_id><sourcerecordid>S2666818123000840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2821-55116d98f6824b1171bfe12265a1f8f83050194c748f58895a529dbd6a6e8b7d3</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhiMEElXpDVjkAi0eJ3acDRKteFSqxILX0pr40bqkcWSnSOy4AzfkJKQtQqxYzWik_5uZL0nOgUyAAL9YT1rUztoJJTTrR4QVcJQMKOd8LEDA8Z_-NBnFuCaEUAYZlNkgeXnGeoud803qbapN66PrUtfEbcBGmXRao3r9-vh8UCtfm5huvDZ1uo2uWaZTbFCtUuWbLqDaM9rgGuXa2pwlJxbraEY_dZg83Vw_zu7Gi_vb-exqMVZUUBgzBsB1KSwXNK8ACqisAUo5Q7DCiowwAmWuilxYJkTJkNFSV5ojN6IqdDZM5geu9riW_foNhnfp0cn9wIelxNA5VRtJKLVaZxXVhch5YStVKSEAQdOCViTvWfmBpYKPMRj7ywMid65lv2HvWu5cy4PrPnZ5iJn-zzdngozKmV6edsGorj_E_Q_4BtXQib8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Valuation of deposit insurance Black–Scholes model using Banach contraction principle</title><source>ScienceDirect</source><creator>Edeki, Sunday O. ; Fadugba, Sunday E. ; Khalique, Chaudry Masood</creator><creatorcontrib>Edeki, Sunday O. ; Fadugba, Sunday E. ; Khalique, Chaudry Masood</creatorcontrib><description>Deposit insurance is a mechanism by which financial institutions are stabilized. The danger of a bank’s inability to meet its consumer commitments due to its suspended license is insured through deposit insurance practices. A flat-rate insurance scheme would contribute to moral hazard and a financial panic when banks indulge in dangerous practices. Hence, a reliable model with an explicit solution is required. This paper considers a risk rate model for deposit insurance engendered by the classical Black Scholes Option Pricing Model. The solutions are obtained via the application of Banach Contraction Mapping or Method. The procedures involved are straightforward, easy, and flexible, even without giving up accuracy. The desired explicit solutions are obtained with less computational time.</description><identifier>ISSN: 2666-8181</identifier><identifier>EISSN: 2666-8181</identifier><identifier>DOI: 10.1016/j.padiff.2023.100571</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analytical solutions ; Black–Scholes model ; Deposit insurance ; Option pricing ; Partial differential equations</subject><ispartof>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters, 2023-12, Vol.8, p.100571, Article 100571</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2821-55116d98f6824b1171bfe12265a1f8f83050194c748f58895a529dbd6a6e8b7d3</cites><orcidid>0000-0002-1986-4859</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Edeki, Sunday O.</creatorcontrib><creatorcontrib>Fadugba, Sunday E.</creatorcontrib><creatorcontrib>Khalique, Chaudry Masood</creatorcontrib><title>Valuation of deposit insurance Black–Scholes model using Banach contraction principle</title><title>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</title><description>Deposit insurance is a mechanism by which financial institutions are stabilized. The danger of a bank’s inability to meet its consumer commitments due to its suspended license is insured through deposit insurance practices. A flat-rate insurance scheme would contribute to moral hazard and a financial panic when banks indulge in dangerous practices. Hence, a reliable model with an explicit solution is required. This paper considers a risk rate model for deposit insurance engendered by the classical Black Scholes Option Pricing Model. The solutions are obtained via the application of Banach Contraction Mapping or Method. The procedures involved are straightforward, easy, and flexible, even without giving up accuracy. The desired explicit solutions are obtained with less computational time.</description><subject>Analytical solutions</subject><subject>Black–Scholes model</subject><subject>Deposit insurance</subject><subject>Option pricing</subject><subject>Partial differential equations</subject><issn>2666-8181</issn><issn>2666-8181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kEtOwzAQhiMEElXpDVjkAi0eJ3acDRKteFSqxILX0pr40bqkcWSnSOy4AzfkJKQtQqxYzWik_5uZL0nOgUyAAL9YT1rUztoJJTTrR4QVcJQMKOd8LEDA8Z_-NBnFuCaEUAYZlNkgeXnGeoud803qbapN66PrUtfEbcBGmXRao3r9-vh8UCtfm5huvDZ1uo2uWaZTbFCtUuWbLqDaM9rgGuXa2pwlJxbraEY_dZg83Vw_zu7Gi_vb-exqMVZUUBgzBsB1KSwXNK8ACqisAUo5Q7DCiowwAmWuilxYJkTJkNFSV5ojN6IqdDZM5geu9riW_foNhnfp0cn9wIelxNA5VRtJKLVaZxXVhch5YStVKSEAQdOCViTvWfmBpYKPMRj7ywMid65lv2HvWu5cy4PrPnZ5iJn-zzdngozKmV6edsGorj_E_Q_4BtXQib8</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Edeki, Sunday O.</creator><creator>Fadugba, Sunday E.</creator><creator>Khalique, Chaudry Masood</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1986-4859</orcidid></search><sort><creationdate>202312</creationdate><title>Valuation of deposit insurance Black–Scholes model using Banach contraction principle</title><author>Edeki, Sunday O. ; Fadugba, Sunday E. ; Khalique, Chaudry Masood</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2821-55116d98f6824b1171bfe12265a1f8f83050194c748f58895a529dbd6a6e8b7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytical solutions</topic><topic>Black–Scholes model</topic><topic>Deposit insurance</topic><topic>Option pricing</topic><topic>Partial differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edeki, Sunday O.</creatorcontrib><creatorcontrib>Fadugba, Sunday E.</creatorcontrib><creatorcontrib>Khalique, Chaudry Masood</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edeki, Sunday O.</au><au>Fadugba, Sunday E.</au><au>Khalique, Chaudry Masood</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Valuation of deposit insurance Black–Scholes model using Banach contraction principle</atitle><jtitle>Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters</jtitle><date>2023-12</date><risdate>2023</risdate><volume>8</volume><spage>100571</spage><pages>100571-</pages><artnum>100571</artnum><issn>2666-8181</issn><eissn>2666-8181</eissn><abstract>Deposit insurance is a mechanism by which financial institutions are stabilized. The danger of a bank’s inability to meet its consumer commitments due to its suspended license is insured through deposit insurance practices. A flat-rate insurance scheme would contribute to moral hazard and a financial panic when banks indulge in dangerous practices. Hence, a reliable model with an explicit solution is required. This paper considers a risk rate model for deposit insurance engendered by the classical Black Scholes Option Pricing Model. The solutions are obtained via the application of Banach Contraction Mapping or Method. The procedures involved are straightforward, easy, and flexible, even without giving up accuracy. The desired explicit solutions are obtained with less computational time.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.padiff.2023.100571</doi><orcidid>https://orcid.org/0000-0002-1986-4859</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-8181
ispartof Partial differential equations in applied mathematics : a spin-off of Applied Mathematics Letters, 2023-12, Vol.8, p.100571, Article 100571
issn 2666-8181
2666-8181
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_022fdd3b2d78467fbcbc881a1d272b04
source ScienceDirect
subjects Analytical solutions
Black–Scholes model
Deposit insurance
Option pricing
Partial differential equations
title Valuation of deposit insurance Black–Scholes model using Banach contraction principle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Valuation%20of%20deposit%20insurance%20Black%E2%80%93Scholes%20model%20using%20Banach%20contraction%20principle&rft.jtitle=Partial%20differential%20equations%20in%20applied%20mathematics%20:%20a%20spin-off%20of%20Applied%20Mathematics%20Letters&rft.au=Edeki,%20Sunday%20O.&rft.date=2023-12&rft.volume=8&rft.spage=100571&rft.pages=100571-&rft.artnum=100571&rft.issn=2666-8181&rft.eissn=2666-8181&rft_id=info:doi/10.1016/j.padiff.2023.100571&rft_dat=%3Celsevier_doaj_%3ES2666818123000840%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2821-55116d98f6824b1171bfe12265a1f8f83050194c748f58895a529dbd6a6e8b7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true