Loading…

The Slight Adjustment in the Weight of Sulfur Sheets to Synthesize β-NiS Nanobelts for Maintaining Detection of Lower Concentrations of Glucose through a Long-Term Storage Test

The β-nickel sulfide (β-NiS) nanobelts were fabricated by electrodepositing a nickel nanosheet film on Indium tin oxide (ITO)-coated glass substrates and sulfuring the nickel film on ITO-coated glass substrates. The sulfurization method can be used to form nanobelts without a template. A small glass...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-08, Vol.13 (16), p.2371
Main Authors: Lin, Hsiensheng, Peng, Chengming, Shi, Jenbin, Zheng, Bochi, Lee, Hsuanwei, Wu, Pofeng, Lee, Minway
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The β-nickel sulfide (β-NiS) nanobelts were fabricated by electrodepositing a nickel nanosheet film on Indium tin oxide (ITO)-coated glass substrates and sulfuring the nickel film on ITO-coated glass substrates. The sulfurization method can be used to form nanobelts without a template. A small glass tube was used to anneal the sulfur sheet with a nickel nanosheet film. After applying vacuum to the tube, the specimen was annealed at 500 °C. By adjusting the weight of the sulfur sheet in a small glass tube, a nanobelt structure can be formed on the film for 4 h. The β-NiS nanobelt film had a sulfide and nickel molar ratio that was nearly 0.7 (S/Ni). After five years of a long-term storage test, the β-NiS nanobelt films were able to measure the glucose in a solution with the value of sensitivity of 8.67 µA cm−2 µM−1. The β-NiS nanobelt film also detected glucose with a limit of low detection (LOD) of around 0.173 µM. The estimation of reproducibility was over 98%. Therefore, the β-NiS nanobelt film has a significant ability to detect low concentrations of glucose in a solution.
ISSN:2079-4991
2079-4991
DOI:10.3390/nano13162371