Loading…

Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice

Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2024-12, Vol.15 (1), p.10482-19, Article 10482
Main Authors: Jiang, Chen, Centonze, Alessia, Song, Yura, Chrisnandy, Antonius, Tika, Elisavet, Rezakhani, Saba, Zahedi, Zahra, Bouvencourt, Gaëlle, Dubois, Christine, Van Keymeulen, Alexandra, Lütolf, Matthias, Sifrim, Alejandro, Blanpain, Cédric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483
container_end_page 19
container_issue 1
container_start_page 10482
container_title Nature communications
container_volume 15
creator Jiang, Chen
Centonze, Alessia
Song, Yura
Chrisnandy, Antonius
Tika, Elisavet
Rezakhani, Saba
Zahedi, Zahra
Bouvencourt, Gaëlle
Dubois, Christine
Van Keymeulen, Alexandra
Lütolf, Matthias
Sifrim, Alejandro
Blanpain, Cédric
description Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia. The mechanisms regulating multipotency in glandular epithelia remain unclear. Here, the authors identify the key role of collagen signaling and ECM stiffness in regulating stem cell multipotency in glandular epithelia.
doi_str_mv 10.1038/s41467-024-54843-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_026c7acaa25c4f5c9f2a150a586ffea3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_026c7acaa25c4f5c9f2a150a586ffea3</doaj_id><sourcerecordid>3147129863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEog_Y58QWgGtVIkLnK1ZZ5z1ynEWO0H03-PdtKXlgC-2PM-8M2O_VfWatO9Jy9SHzAmXXdNS3giuOGvEs-qctpw0pKPs-aPzWXWZ874ti2miOH9ZnTEttSCEnFe7zRQCDBjr7IcIwcehhtjXI8zJ_67z7J2LmHOdcFgCzFiPS5j9YZox2tvax3oIhS-hVOPBzzsMHkLJw7G2GEI-IqO3-Kp64SBkvLzbL6ofXz5_31w1N9--Xm8-3TSWaiaaTvDWOlCoFXFK6a3outK3dKKnwLeyF5KKnvVat653HEAzQEk62SlJLVfsorpedfsJ9uaQ_Ajp1kzgzeliSoOBNHsb0LRU2g4sABWWO2G1o0BEC0JJ5xBY0fq4ah2W7Yi9xTgnCE9En0ai35lh-mUIkUIoRYvCuzuFNP1cMM9m9Pn4LhBxWrJhhHeEaiWPxd7-g-6nJZUvOVFSckG0LhRdKZumnBO6h25Ia47GMKsxynDcnIxhREl683iOh5R7GxSArUAuoThg-lv7P7J_AFwNxMY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146645199</pqid></control><display><type>article</type><title>Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice</title><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jiang, Chen ; Centonze, Alessia ; Song, Yura ; Chrisnandy, Antonius ; Tika, Elisavet ; Rezakhani, Saba ; Zahedi, Zahra ; Bouvencourt, Gaëlle ; Dubois, Christine ; Van Keymeulen, Alexandra ; Lütolf, Matthias ; Sifrim, Alejandro ; Blanpain, Cédric</creator><creatorcontrib>Jiang, Chen ; Centonze, Alessia ; Song, Yura ; Chrisnandy, Antonius ; Tika, Elisavet ; Rezakhani, Saba ; Zahedi, Zahra ; Bouvencourt, Gaëlle ; Dubois, Christine ; Van Keymeulen, Alexandra ; Lütolf, Matthias ; Sifrim, Alejandro ; Blanpain, Cédric</creatorcontrib><description>Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia. The mechanisms regulating multipotency in glandular epithelia remain unclear. Here, the authors identify the key role of collagen signaling and ECM stiffness in regulating stem cell multipotency in glandular epithelia.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-54843-5</identifier><identifier>PMID: 39695111</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/100 ; 13/31 ; 13/51 ; 14/19 ; 38/61 ; 45/91 ; 631/136/532/2118/2436 ; 631/532/2118 ; 631/80/86 ; 64/60 ; Ablation ; Animals ; Basal cells ; Cell Differentiation ; Collagen ; Collagen (type I) ; Collagen - metabolism ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Embryo cells ; Embryogenesis ; Embryonic growth stage ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Epithelium ; Extracellular matrix ; Extracellular Matrix - metabolism ; Female ; Gene expression ; Humanities and Social Sciences ; Integrin beta1 - genetics ; Integrin beta1 - metabolism ; Male ; Mammary gland ; Mammary glands ; Mammary Glands, Animal - cytology ; Mammary Glands, Animal - metabolism ; Mice ; multidisciplinary ; Multipotent Stem Cells - cytology ; Multipotent Stem Cells - metabolism ; Organoids ; Organoids - cytology ; Organoids - metabolism ; Prostate ; Prostate - cytology ; Prostate - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction ; Stem cells ; Stiffness ; Transcription factors</subject><ispartof>Nature communications, 2024-12, Vol.15 (1), p.10482-19, Article 10482</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483</cites><orcidid>0000-0002-5898-305X ; 0000-0001-8247-4020 ; 0000-0002-3851-4870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3146645199/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3146645199?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39695111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Centonze, Alessia</creatorcontrib><creatorcontrib>Song, Yura</creatorcontrib><creatorcontrib>Chrisnandy, Antonius</creatorcontrib><creatorcontrib>Tika, Elisavet</creatorcontrib><creatorcontrib>Rezakhani, Saba</creatorcontrib><creatorcontrib>Zahedi, Zahra</creatorcontrib><creatorcontrib>Bouvencourt, Gaëlle</creatorcontrib><creatorcontrib>Dubois, Christine</creatorcontrib><creatorcontrib>Van Keymeulen, Alexandra</creatorcontrib><creatorcontrib>Lütolf, Matthias</creatorcontrib><creatorcontrib>Sifrim, Alejandro</creatorcontrib><creatorcontrib>Blanpain, Cédric</creatorcontrib><title>Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia. The mechanisms regulating multipotency in glandular epithelia remain unclear. Here, the authors identify the key role of collagen signaling and ECM stiffness in regulating stem cell multipotency in glandular epithelia.</description><subject>13/1</subject><subject>13/100</subject><subject>13/31</subject><subject>13/51</subject><subject>14/19</subject><subject>38/61</subject><subject>45/91</subject><subject>631/136/532/2118/2436</subject><subject>631/532/2118</subject><subject>631/80/86</subject><subject>64/60</subject><subject>Ablation</subject><subject>Animals</subject><subject>Basal cells</subject><subject>Cell Differentiation</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen - metabolism</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Embryo cells</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Female</subject><subject>Gene expression</subject><subject>Humanities and Social Sciences</subject><subject>Integrin beta1 - genetics</subject><subject>Integrin beta1 - metabolism</subject><subject>Male</subject><subject>Mammary gland</subject><subject>Mammary glands</subject><subject>Mammary Glands, Animal - cytology</subject><subject>Mammary Glands, Animal - metabolism</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Multipotent Stem Cells - cytology</subject><subject>Multipotent Stem Cells - metabolism</subject><subject>Organoids</subject><subject>Organoids - cytology</subject><subject>Organoids - metabolism</subject><subject>Prostate</subject><subject>Prostate - cytology</subject><subject>Prostate - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Stem cells</subject><subject>Stiffness</subject><subject>Transcription factors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEog_Y58QWgGtVIkLnK1ZZ5z1ynEWO0H03-PdtKXlgC-2PM-8M2O_VfWatO9Jy9SHzAmXXdNS3giuOGvEs-qctpw0pKPs-aPzWXWZ874ti2miOH9ZnTEttSCEnFe7zRQCDBjr7IcIwcehhtjXI8zJ_67z7J2LmHOdcFgCzFiPS5j9YZox2tvax3oIhS-hVOPBzzsMHkLJw7G2GEI-IqO3-Kp64SBkvLzbL6ofXz5_31w1N9--Xm8-3TSWaiaaTvDWOlCoFXFK6a3outK3dKKnwLeyF5KKnvVat653HEAzQEk62SlJLVfsorpedfsJ9uaQ_Ajp1kzgzeliSoOBNHsb0LRU2g4sABWWO2G1o0BEC0JJ5xBY0fq4ah2W7Yi9xTgnCE9En0ai35lh-mUIkUIoRYvCuzuFNP1cMM9m9Pn4LhBxWrJhhHeEaiWPxd7-g-6nJZUvOVFSckG0LhRdKZumnBO6h25Ia47GMKsxynDcnIxhREl683iOh5R7GxSArUAuoThg-lv7P7J_AFwNxMY</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Jiang, Chen</creator><creator>Centonze, Alessia</creator><creator>Song, Yura</creator><creator>Chrisnandy, Antonius</creator><creator>Tika, Elisavet</creator><creator>Rezakhani, Saba</creator><creator>Zahedi, Zahra</creator><creator>Bouvencourt, Gaëlle</creator><creator>Dubois, Christine</creator><creator>Van Keymeulen, Alexandra</creator><creator>Lütolf, Matthias</creator><creator>Sifrim, Alejandro</creator><creator>Blanpain, Cédric</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5898-305X</orcidid><orcidid>https://orcid.org/0000-0001-8247-4020</orcidid><orcidid>https://orcid.org/0000-0002-3851-4870</orcidid></search><sort><creationdate>20241218</creationdate><title>Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice</title><author>Jiang, Chen ; Centonze, Alessia ; Song, Yura ; Chrisnandy, Antonius ; Tika, Elisavet ; Rezakhani, Saba ; Zahedi, Zahra ; Bouvencourt, Gaëlle ; Dubois, Christine ; Van Keymeulen, Alexandra ; Lütolf, Matthias ; Sifrim, Alejandro ; Blanpain, Cédric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>13/100</topic><topic>13/31</topic><topic>13/51</topic><topic>14/19</topic><topic>38/61</topic><topic>45/91</topic><topic>631/136/532/2118/2436</topic><topic>631/532/2118</topic><topic>631/80/86</topic><topic>64/60</topic><topic>Ablation</topic><topic>Animals</topic><topic>Basal cells</topic><topic>Cell Differentiation</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen - metabolism</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Embryo cells</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Female</topic><topic>Gene expression</topic><topic>Humanities and Social Sciences</topic><topic>Integrin beta1 - genetics</topic><topic>Integrin beta1 - metabolism</topic><topic>Male</topic><topic>Mammary gland</topic><topic>Mammary glands</topic><topic>Mammary Glands, Animal - cytology</topic><topic>Mammary Glands, Animal - metabolism</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Multipotent Stem Cells - cytology</topic><topic>Multipotent Stem Cells - metabolism</topic><topic>Organoids</topic><topic>Organoids - cytology</topic><topic>Organoids - metabolism</topic><topic>Prostate</topic><topic>Prostate - cytology</topic><topic>Prostate - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Stem cells</topic><topic>Stiffness</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Centonze, Alessia</creatorcontrib><creatorcontrib>Song, Yura</creatorcontrib><creatorcontrib>Chrisnandy, Antonius</creatorcontrib><creatorcontrib>Tika, Elisavet</creatorcontrib><creatorcontrib>Rezakhani, Saba</creatorcontrib><creatorcontrib>Zahedi, Zahra</creatorcontrib><creatorcontrib>Bouvencourt, Gaëlle</creatorcontrib><creatorcontrib>Dubois, Christine</creatorcontrib><creatorcontrib>Van Keymeulen, Alexandra</creatorcontrib><creatorcontrib>Lütolf, Matthias</creatorcontrib><creatorcontrib>Sifrim, Alejandro</creatorcontrib><creatorcontrib>Blanpain, Cédric</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chen</au><au>Centonze, Alessia</au><au>Song, Yura</au><au>Chrisnandy, Antonius</au><au>Tika, Elisavet</au><au>Rezakhani, Saba</au><au>Zahedi, Zahra</au><au>Bouvencourt, Gaëlle</au><au>Dubois, Christine</au><au>Van Keymeulen, Alexandra</au><au>Lütolf, Matthias</au><au>Sifrim, Alejandro</au><au>Blanpain, Cédric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>10482</spage><epage>19</epage><pages>10482-19</pages><artnum>10482</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia. The mechanisms regulating multipotency in glandular epithelia remain unclear. Here, the authors identify the key role of collagen signaling and ECM stiffness in regulating stem cell multipotency in glandular epithelia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39695111</pmid><doi>10.1038/s41467-024-54843-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5898-305X</orcidid><orcidid>https://orcid.org/0000-0001-8247-4020</orcidid><orcidid>https://orcid.org/0000-0002-3851-4870</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2024-12, Vol.15 (1), p.10482-19, Article 10482
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_026c7acaa25c4f5c9f2a150a586ffea3
source Publicly Available Content (ProQuest); Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 13/1
13/100
13/31
13/51
14/19
38/61
45/91
631/136/532/2118/2436
631/532/2118
631/80/86
64/60
Ablation
Animals
Basal cells
Cell Differentiation
Collagen
Collagen (type I)
Collagen - metabolism
Collagen Type I - genetics
Collagen Type I - metabolism
Embryo cells
Embryogenesis
Embryonic growth stage
Epithelial Cells - cytology
Epithelial Cells - metabolism
Epithelium
Extracellular matrix
Extracellular Matrix - metabolism
Female
Gene expression
Humanities and Social Sciences
Integrin beta1 - genetics
Integrin beta1 - metabolism
Male
Mammary gland
Mammary glands
Mammary Glands, Animal - cytology
Mammary Glands, Animal - metabolism
Mice
multidisciplinary
Multipotent Stem Cells - cytology
Multipotent Stem Cells - metabolism
Organoids
Organoids - cytology
Organoids - metabolism
Prostate
Prostate - cytology
Prostate - metabolism
Science
Science (multidisciplinary)
Signal Transduction
Stem cells
Stiffness
Transcription factors
title Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collagen%20signaling%20and%20matrix%20stiffness%20regulate%20multipotency%20in%20glandular%20epithelial%20stem%20cells%20in%20mice&rft.jtitle=Nature%20communications&rft.au=Jiang,%20Chen&rft.date=2024-12-18&rft.volume=15&rft.issue=1&rft.spage=10482&rft.epage=19&rft.pages=10482-19&rft.artnum=10482&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-54843-5&rft_dat=%3Cproquest_doaj_%3E3147129863%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146645199&rft_id=info:pmid/39695111&rfr_iscdi=true