Loading…
Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice
Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as...
Saved in:
Published in: | Nature communications 2024-12, Vol.15 (1), p.10482-19, Article 10482 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483 |
container_end_page | 19 |
container_issue | 1 |
container_start_page | 10482 |
container_title | Nature communications |
container_volume | 15 |
creator | Jiang, Chen Centonze, Alessia Song, Yura Chrisnandy, Antonius Tika, Elisavet Rezakhani, Saba Zahedi, Zahra Bouvencourt, Gaëlle Dubois, Christine Van Keymeulen, Alexandra Lütolf, Matthias Sifrim, Alejandro Blanpain, Cédric |
description | Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia.
The mechanisms regulating multipotency in glandular epithelia remain unclear. Here, the authors identify the key role of collagen signaling and ECM stiffness in regulating stem cell multipotency in glandular epithelia. |
doi_str_mv | 10.1038/s41467-024-54843-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_026c7acaa25c4f5c9f2a150a586ffea3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_026c7acaa25c4f5c9f2a150a586ffea3</doaj_id><sourcerecordid>3147129863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEog_Y58QWgGtVIkLnK1ZZ5z1ynEWO0H03-PdtKXlgC-2PM-8M2O_VfWatO9Jy9SHzAmXXdNS3giuOGvEs-qctpw0pKPs-aPzWXWZ874ti2miOH9ZnTEttSCEnFe7zRQCDBjr7IcIwcehhtjXI8zJ_67z7J2LmHOdcFgCzFiPS5j9YZox2tvax3oIhS-hVOPBzzsMHkLJw7G2GEI-IqO3-Kp64SBkvLzbL6ofXz5_31w1N9--Xm8-3TSWaiaaTvDWOlCoFXFK6a3outK3dKKnwLeyF5KKnvVat653HEAzQEk62SlJLVfsorpedfsJ9uaQ_Ajp1kzgzeliSoOBNHsb0LRU2g4sABWWO2G1o0BEC0JJ5xBY0fq4ah2W7Yi9xTgnCE9En0ai35lh-mUIkUIoRYvCuzuFNP1cMM9m9Pn4LhBxWrJhhHeEaiWPxd7-g-6nJZUvOVFSckG0LhRdKZumnBO6h25Ia47GMKsxynDcnIxhREl683iOh5R7GxSArUAuoThg-lv7P7J_AFwNxMY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146645199</pqid></control><display><type>article</type><title>Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice</title><source>Publicly Available Content (ProQuest)</source><source>Nature Journals Online</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jiang, Chen ; Centonze, Alessia ; Song, Yura ; Chrisnandy, Antonius ; Tika, Elisavet ; Rezakhani, Saba ; Zahedi, Zahra ; Bouvencourt, Gaëlle ; Dubois, Christine ; Van Keymeulen, Alexandra ; Lütolf, Matthias ; Sifrim, Alejandro ; Blanpain, Cédric</creator><creatorcontrib>Jiang, Chen ; Centonze, Alessia ; Song, Yura ; Chrisnandy, Antonius ; Tika, Elisavet ; Rezakhani, Saba ; Zahedi, Zahra ; Bouvencourt, Gaëlle ; Dubois, Christine ; Van Keymeulen, Alexandra ; Lütolf, Matthias ; Sifrim, Alejandro ; Blanpain, Cédric</creatorcontrib><description>Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia.
The mechanisms regulating multipotency in glandular epithelia remain unclear. Here, the authors identify the key role of collagen signaling and ECM stiffness in regulating stem cell multipotency in glandular epithelia.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-024-54843-5</identifier><identifier>PMID: 39695111</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/1 ; 13/100 ; 13/31 ; 13/51 ; 14/19 ; 38/61 ; 45/91 ; 631/136/532/2118/2436 ; 631/532/2118 ; 631/80/86 ; 64/60 ; Ablation ; Animals ; Basal cells ; Cell Differentiation ; Collagen ; Collagen (type I) ; Collagen - metabolism ; Collagen Type I - genetics ; Collagen Type I - metabolism ; Embryo cells ; Embryogenesis ; Embryonic growth stage ; Epithelial Cells - cytology ; Epithelial Cells - metabolism ; Epithelium ; Extracellular matrix ; Extracellular Matrix - metabolism ; Female ; Gene expression ; Humanities and Social Sciences ; Integrin beta1 - genetics ; Integrin beta1 - metabolism ; Male ; Mammary gland ; Mammary glands ; Mammary Glands, Animal - cytology ; Mammary Glands, Animal - metabolism ; Mice ; multidisciplinary ; Multipotent Stem Cells - cytology ; Multipotent Stem Cells - metabolism ; Organoids ; Organoids - cytology ; Organoids - metabolism ; Prostate ; Prostate - cytology ; Prostate - metabolism ; Science ; Science (multidisciplinary) ; Signal Transduction ; Stem cells ; Stiffness ; Transcription factors</subject><ispartof>Nature communications, 2024-12, Vol.15 (1), p.10482-19, Article 10482</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>Copyright Nature Publishing Group 2024</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483</cites><orcidid>0000-0002-5898-305X ; 0000-0001-8247-4020 ; 0000-0002-3851-4870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3146645199/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3146645199?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39695111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Centonze, Alessia</creatorcontrib><creatorcontrib>Song, Yura</creatorcontrib><creatorcontrib>Chrisnandy, Antonius</creatorcontrib><creatorcontrib>Tika, Elisavet</creatorcontrib><creatorcontrib>Rezakhani, Saba</creatorcontrib><creatorcontrib>Zahedi, Zahra</creatorcontrib><creatorcontrib>Bouvencourt, Gaëlle</creatorcontrib><creatorcontrib>Dubois, Christine</creatorcontrib><creatorcontrib>Van Keymeulen, Alexandra</creatorcontrib><creatorcontrib>Lütolf, Matthias</creatorcontrib><creatorcontrib>Sifrim, Alejandro</creatorcontrib><creatorcontrib>Blanpain, Cédric</creatorcontrib><title>Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia.
The mechanisms regulating multipotency in glandular epithelia remain unclear. Here, the authors identify the key role of collagen signaling and ECM stiffness in regulating stem cell multipotency in glandular epithelia.</description><subject>13/1</subject><subject>13/100</subject><subject>13/31</subject><subject>13/51</subject><subject>14/19</subject><subject>38/61</subject><subject>45/91</subject><subject>631/136/532/2118/2436</subject><subject>631/532/2118</subject><subject>631/80/86</subject><subject>64/60</subject><subject>Ablation</subject><subject>Animals</subject><subject>Basal cells</subject><subject>Cell Differentiation</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen - metabolism</subject><subject>Collagen Type I - genetics</subject><subject>Collagen Type I - metabolism</subject><subject>Embryo cells</subject><subject>Embryogenesis</subject><subject>Embryonic growth stage</subject><subject>Epithelial Cells - cytology</subject><subject>Epithelial Cells - metabolism</subject><subject>Epithelium</subject><subject>Extracellular matrix</subject><subject>Extracellular Matrix - metabolism</subject><subject>Female</subject><subject>Gene expression</subject><subject>Humanities and Social Sciences</subject><subject>Integrin beta1 - genetics</subject><subject>Integrin beta1 - metabolism</subject><subject>Male</subject><subject>Mammary gland</subject><subject>Mammary glands</subject><subject>Mammary Glands, Animal - cytology</subject><subject>Mammary Glands, Animal - metabolism</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Multipotent Stem Cells - cytology</subject><subject>Multipotent Stem Cells - metabolism</subject><subject>Organoids</subject><subject>Organoids - cytology</subject><subject>Organoids - metabolism</subject><subject>Prostate</subject><subject>Prostate - cytology</subject><subject>Prostate - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Stem cells</subject><subject>Stiffness</subject><subject>Transcription factors</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhEog_Y58QWgGtVIkLnK1ZZ5z1ynEWO0H03-PdtKXlgC-2PM-8M2O_VfWatO9Jy9SHzAmXXdNS3giuOGvEs-qctpw0pKPs-aPzWXWZ874ti2miOH9ZnTEttSCEnFe7zRQCDBjr7IcIwcehhtjXI8zJ_67z7J2LmHOdcFgCzFiPS5j9YZox2tvax3oIhS-hVOPBzzsMHkLJw7G2GEI-IqO3-Kp64SBkvLzbL6ofXz5_31w1N9--Xm8-3TSWaiaaTvDWOlCoFXFK6a3outK3dKKnwLeyF5KKnvVat653HEAzQEk62SlJLVfsorpedfsJ9uaQ_Ajp1kzgzeliSoOBNHsb0LRU2g4sABWWO2G1o0BEC0JJ5xBY0fq4ah2W7Yi9xTgnCE9En0ai35lh-mUIkUIoRYvCuzuFNP1cMM9m9Pn4LhBxWrJhhHeEaiWPxd7-g-6nJZUvOVFSckG0LhRdKZumnBO6h25Ia47GMKsxynDcnIxhREl683iOh5R7GxSArUAuoThg-lv7P7J_AFwNxMY</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Jiang, Chen</creator><creator>Centonze, Alessia</creator><creator>Song, Yura</creator><creator>Chrisnandy, Antonius</creator><creator>Tika, Elisavet</creator><creator>Rezakhani, Saba</creator><creator>Zahedi, Zahra</creator><creator>Bouvencourt, Gaëlle</creator><creator>Dubois, Christine</creator><creator>Van Keymeulen, Alexandra</creator><creator>Lütolf, Matthias</creator><creator>Sifrim, Alejandro</creator><creator>Blanpain, Cédric</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5898-305X</orcidid><orcidid>https://orcid.org/0000-0001-8247-4020</orcidid><orcidid>https://orcid.org/0000-0002-3851-4870</orcidid></search><sort><creationdate>20241218</creationdate><title>Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice</title><author>Jiang, Chen ; Centonze, Alessia ; Song, Yura ; Chrisnandy, Antonius ; Tika, Elisavet ; Rezakhani, Saba ; Zahedi, Zahra ; Bouvencourt, Gaëlle ; Dubois, Christine ; Van Keymeulen, Alexandra ; Lütolf, Matthias ; Sifrim, Alejandro ; Blanpain, Cédric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>13/1</topic><topic>13/100</topic><topic>13/31</topic><topic>13/51</topic><topic>14/19</topic><topic>38/61</topic><topic>45/91</topic><topic>631/136/532/2118/2436</topic><topic>631/532/2118</topic><topic>631/80/86</topic><topic>64/60</topic><topic>Ablation</topic><topic>Animals</topic><topic>Basal cells</topic><topic>Cell Differentiation</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen - metabolism</topic><topic>Collagen Type I - genetics</topic><topic>Collagen Type I - metabolism</topic><topic>Embryo cells</topic><topic>Embryogenesis</topic><topic>Embryonic growth stage</topic><topic>Epithelial Cells - cytology</topic><topic>Epithelial Cells - metabolism</topic><topic>Epithelium</topic><topic>Extracellular matrix</topic><topic>Extracellular Matrix - metabolism</topic><topic>Female</topic><topic>Gene expression</topic><topic>Humanities and Social Sciences</topic><topic>Integrin beta1 - genetics</topic><topic>Integrin beta1 - metabolism</topic><topic>Male</topic><topic>Mammary gland</topic><topic>Mammary glands</topic><topic>Mammary Glands, Animal - cytology</topic><topic>Mammary Glands, Animal - metabolism</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Multipotent Stem Cells - cytology</topic><topic>Multipotent Stem Cells - metabolism</topic><topic>Organoids</topic><topic>Organoids - cytology</topic><topic>Organoids - metabolism</topic><topic>Prostate</topic><topic>Prostate - cytology</topic><topic>Prostate - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Stem cells</topic><topic>Stiffness</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chen</creatorcontrib><creatorcontrib>Centonze, Alessia</creatorcontrib><creatorcontrib>Song, Yura</creatorcontrib><creatorcontrib>Chrisnandy, Antonius</creatorcontrib><creatorcontrib>Tika, Elisavet</creatorcontrib><creatorcontrib>Rezakhani, Saba</creatorcontrib><creatorcontrib>Zahedi, Zahra</creatorcontrib><creatorcontrib>Bouvencourt, Gaëlle</creatorcontrib><creatorcontrib>Dubois, Christine</creatorcontrib><creatorcontrib>Van Keymeulen, Alexandra</creatorcontrib><creatorcontrib>Lütolf, Matthias</creatorcontrib><creatorcontrib>Sifrim, Alejandro</creatorcontrib><creatorcontrib>Blanpain, Cédric</creatorcontrib><collection>SpringerOpen (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chen</au><au>Centonze, Alessia</au><au>Song, Yura</au><au>Chrisnandy, Antonius</au><au>Tika, Elisavet</au><au>Rezakhani, Saba</au><au>Zahedi, Zahra</au><au>Bouvencourt, Gaëlle</au><au>Dubois, Christine</au><au>Van Keymeulen, Alexandra</au><au>Lütolf, Matthias</au><au>Sifrim, Alejandro</au><au>Blanpain, Cédric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-12-18</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>10482</spage><epage>19</epage><pages>10482-19</pages><artnum>10482</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Glandular epithelia, including mammary gland (MG) and prostate, are composed of luminal and basal cells. During embryonic development, glandular epithelia arise from multipotent stem cells (SCs) that are replaced after birth by unipotent basal and unipotent luminal SCs. Different conditions, such as basal cell transplantation, luminal cell ablation, and oncogene expression can reinduce adult basal SC (BaSCs) multipotency in different glandular epithelia. The mechanisms regulating the reactivation of multipotency are incompletely understood. Here, we have found that Collagen I expression is commonly upregulated in BaSCs across the different multipotent conditions. Increasing collagen concentration or stiffness of the extracellular matrix (ECM) promotes BaSC multipotency in MG and prostate organoids. Single cell RNA-seq of MG organoids in stiff conditions have uncovered the importance of β1 integrin/FAK/AP-1 axis in the regulation of BaSC multipotency. Altogether our study uncovers the key role of Collagen signaling and ECM stiffness in the regulation of multipotency in glandular epithelia.
The mechanisms regulating multipotency in glandular epithelia remain unclear. Here, the authors identify the key role of collagen signaling and ECM stiffness in regulating stem cell multipotency in glandular epithelia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39695111</pmid><doi>10.1038/s41467-024-54843-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-5898-305X</orcidid><orcidid>https://orcid.org/0000-0001-8247-4020</orcidid><orcidid>https://orcid.org/0000-0002-3851-4870</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-12, Vol.15 (1), p.10482-19, Article 10482 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_026c7acaa25c4f5c9f2a150a586ffea3 |
source | Publicly Available Content (ProQuest); Nature Journals Online; PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13/1 13/100 13/31 13/51 14/19 38/61 45/91 631/136/532/2118/2436 631/532/2118 631/80/86 64/60 Ablation Animals Basal cells Cell Differentiation Collagen Collagen (type I) Collagen - metabolism Collagen Type I - genetics Collagen Type I - metabolism Embryo cells Embryogenesis Embryonic growth stage Epithelial Cells - cytology Epithelial Cells - metabolism Epithelium Extracellular matrix Extracellular Matrix - metabolism Female Gene expression Humanities and Social Sciences Integrin beta1 - genetics Integrin beta1 - metabolism Male Mammary gland Mammary glands Mammary Glands, Animal - cytology Mammary Glands, Animal - metabolism Mice multidisciplinary Multipotent Stem Cells - cytology Multipotent Stem Cells - metabolism Organoids Organoids - cytology Organoids - metabolism Prostate Prostate - cytology Prostate - metabolism Science Science (multidisciplinary) Signal Transduction Stem cells Stiffness Transcription factors |
title | Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collagen%20signaling%20and%20matrix%20stiffness%20regulate%20multipotency%20in%20glandular%20epithelial%20stem%20cells%20in%20mice&rft.jtitle=Nature%20communications&rft.au=Jiang,%20Chen&rft.date=2024-12-18&rft.volume=15&rft.issue=1&rft.spage=10482&rft.epage=19&rft.pages=10482-19&rft.artnum=10482&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-024-54843-5&rft_dat=%3Cproquest_doaj_%3E3147129863%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2935-7540cfa8e981f889b5770396f5d2a4b6d5625d3d990fdf4aa93ae61767862c483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3146645199&rft_id=info:pmid/39695111&rfr_iscdi=true |