Loading…

Analysis of a stochastic single species model with Allee effect and jump-diffusion

In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochas...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations 2020-04, Vol.2020 (1), p.1-11, Article 165
Main Author: Jin, Yalin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343
cites cdi_FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343
container_end_page 11
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2020
creator Jin, Yalin
description In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochastic permanence and extinction of the model. In addition, we estimate the growth rate of the solution. Our results reveal that the properties of the model have close relationships with the jump-diffusion. Finally, we work out several numerical simulations to validate the theoretical results.
doi_str_mv 10.1186/s13662-020-02631-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_028dbe140f9144ee8695f70538d2967c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_028dbe140f9144ee8695f70538d2967c</doaj_id><sourcerecordid>2391790940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhU1JIM8_kJUga7d62HoshyFtBwKFkqyFRrqaaPBYU10Pwf--SlzSrroQEpdzvsPVaZo7Rj8zpuUXZEJK3lJO65GCtfOn5pJJrVqmO3X2z_uiuULcU8pNp_Vl83M1umHGhCRH4ghO2b84nJInmMbdAASP4BMgOeQAA3lN0wtZDQMAgRjBT8SNgexPh2MbUownTHm8ac6jGxBu_9zXzfPXh6f19_bxx7fNevXY-o6bqVWw1VJGF0LsPd0Ko3qIzmyBsQhBc-ij8V5RKoTi2snQ015I4zUzgTnRietms3BDdnt7LOngymyzS_Z9kMvOulI3GcBSrkMFdzQa1nUAWpo-qsrTgRupfGXdL6xjyb9OgJPd51OpX4OWC8OUoaajVcUXlS8ZsUD8SGXUvvVglx5qHrXvPdi5msRiwioed1D-ov_j-g2k3IsR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391790940</pqid></control><display><type>article</type><title>Analysis of a stochastic single species model with Allee effect and jump-diffusion</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Jin, Yalin</creator><creatorcontrib>Jin, Yalin</creatorcontrib><description>In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochastic permanence and extinction of the model. In addition, we estimate the growth rate of the solution. Our results reveal that the properties of the model have close relationships with the jump-diffusion. Finally, we work out several numerical simulations to validate the theoretical results.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-020-02631-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Allee effect ; Analysis ; Computer simulation ; Difference and Functional Equations ; Diffusion effects ; Extinction ; Functional Analysis ; Lévy jumps ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Stochastic permanence</subject><ispartof>Advances in difference equations, 2020-04, Vol.2020 (1), p.1-11, Article 165</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343</citedby><cites>FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2391790940/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2391790940?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Jin, Yalin</creatorcontrib><title>Analysis of a stochastic single species model with Allee effect and jump-diffusion</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochastic permanence and extinction of the model. In addition, we estimate the growth rate of the solution. Our results reveal that the properties of the model have close relationships with the jump-diffusion. Finally, we work out several numerical simulations to validate the theoretical results.</description><subject>Allee effect</subject><subject>Analysis</subject><subject>Computer simulation</subject><subject>Difference and Functional Equations</subject><subject>Diffusion effects</subject><subject>Extinction</subject><subject>Functional Analysis</subject><subject>Lévy jumps</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Stochastic permanence</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtr3DAUhU1JIM8_kJUga7d62HoshyFtBwKFkqyFRrqaaPBYU10Pwf--SlzSrroQEpdzvsPVaZo7Rj8zpuUXZEJK3lJO65GCtfOn5pJJrVqmO3X2z_uiuULcU8pNp_Vl83M1umHGhCRH4ghO2b84nJInmMbdAASP4BMgOeQAA3lN0wtZDQMAgRjBT8SNgexPh2MbUownTHm8ac6jGxBu_9zXzfPXh6f19_bxx7fNevXY-o6bqVWw1VJGF0LsPd0Ko3qIzmyBsQhBc-ij8V5RKoTi2snQ015I4zUzgTnRietms3BDdnt7LOngymyzS_Z9kMvOulI3GcBSrkMFdzQa1nUAWpo-qsrTgRupfGXdL6xjyb9OgJPd51OpX4OWC8OUoaajVcUXlS8ZsUD8SGXUvvVglx5qHrXvPdi5msRiwioed1D-ov_j-g2k3IsR</recordid><startdate>20200419</startdate><enddate>20200419</enddate><creator>Jin, Yalin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200419</creationdate><title>Analysis of a stochastic single species model with Allee effect and jump-diffusion</title><author>Jin, Yalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allee effect</topic><topic>Analysis</topic><topic>Computer simulation</topic><topic>Difference and Functional Equations</topic><topic>Diffusion effects</topic><topic>Extinction</topic><topic>Functional Analysis</topic><topic>Lévy jumps</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Stochastic permanence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yalin</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a stochastic single species model with Allee effect and jump-diffusion</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2020-04-19</date><risdate>2020</risdate><volume>2020</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>165</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochastic permanence and extinction of the model. In addition, we estimate the growth rate of the solution. Our results reveal that the properties of the model have close relationships with the jump-diffusion. Finally, we work out several numerical simulations to validate the theoretical results.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-020-02631-y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2020-04, Vol.2020 (1), p.1-11, Article 165
issn 1687-1847
1687-1839
1687-1847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_028dbe140f9144ee8695f70538d2967c
source Publicly Available Content Database; DOAJ Directory of Open Access Journals
subjects Allee effect
Analysis
Computer simulation
Difference and Functional Equations
Diffusion effects
Extinction
Functional Analysis
Lévy jumps
Mathematical models
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Stochastic permanence
title Analysis of a stochastic single species model with Allee effect and jump-diffusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20stochastic%20single%20species%20model%20with%20Allee%20effect%20and%20jump-diffusion&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Jin,%20Yalin&rft.date=2020-04-19&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=165&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-020-02631-y&rft_dat=%3Cproquest_doaj_%3E2391790940%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2391790940&rft_id=info:pmid/&rfr_iscdi=true