Loading…
Analysis of a stochastic single species model with Allee effect and jump-diffusion
In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochas...
Saved in:
Published in: | Advances in difference equations 2020-04, Vol.2020 (1), p.1-11, Article 165 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 1 |
container_title | Advances in difference equations |
container_volume | 2020 |
creator | Jin, Yalin |
description | In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochastic permanence and extinction of the model. In addition, we estimate the growth rate of the solution. Our results reveal that the properties of the model have close relationships with the jump-diffusion. Finally, we work out several numerical simulations to validate the theoretical results. |
doi_str_mv | 10.1186/s13662-020-02631-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_028dbe140f9144ee8695f70538d2967c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_028dbe140f9144ee8695f70538d2967c</doaj_id><sourcerecordid>2391790940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhU1JIM8_kJUga7d62HoshyFtBwKFkqyFRrqaaPBYU10Pwf--SlzSrroQEpdzvsPVaZo7Rj8zpuUXZEJK3lJO65GCtfOn5pJJrVqmO3X2z_uiuULcU8pNp_Vl83M1umHGhCRH4ghO2b84nJInmMbdAASP4BMgOeQAA3lN0wtZDQMAgRjBT8SNgexPh2MbUownTHm8ac6jGxBu_9zXzfPXh6f19_bxx7fNevXY-o6bqVWw1VJGF0LsPd0Ko3qIzmyBsQhBc-ij8V5RKoTi2snQ015I4zUzgTnRietms3BDdnt7LOngymyzS_Z9kMvOulI3GcBSrkMFdzQa1nUAWpo-qsrTgRupfGXdL6xjyb9OgJPd51OpX4OWC8OUoaajVcUXlS8ZsUD8SGXUvvVglx5qHrXvPdi5msRiwioed1D-ov_j-g2k3IsR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391790940</pqid></control><display><type>article</type><title>Analysis of a stochastic single species model with Allee effect and jump-diffusion</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Jin, Yalin</creator><creatorcontrib>Jin, Yalin</creatorcontrib><description>In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochastic permanence and extinction of the model. In addition, we estimate the growth rate of the solution. Our results reveal that the properties of the model have close relationships with the jump-diffusion. Finally, we work out several numerical simulations to validate the theoretical results.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-020-02631-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Allee effect ; Analysis ; Computer simulation ; Difference and Functional Equations ; Diffusion effects ; Extinction ; Functional Analysis ; Lévy jumps ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Stochastic permanence</subject><ispartof>Advances in difference equations, 2020-04, Vol.2020 (1), p.1-11, Article 165</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343</citedby><cites>FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2391790940/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2391790940?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Jin, Yalin</creatorcontrib><title>Analysis of a stochastic single species model with Allee effect and jump-diffusion</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochastic permanence and extinction of the model. In addition, we estimate the growth rate of the solution. Our results reveal that the properties of the model have close relationships with the jump-diffusion. Finally, we work out several numerical simulations to validate the theoretical results.</description><subject>Allee effect</subject><subject>Analysis</subject><subject>Computer simulation</subject><subject>Difference and Functional Equations</subject><subject>Diffusion effects</subject><subject>Extinction</subject><subject>Functional Analysis</subject><subject>Lévy jumps</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Stochastic permanence</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kUtr3DAUhU1JIM8_kJUga7d62HoshyFtBwKFkqyFRrqaaPBYU10Pwf--SlzSrroQEpdzvsPVaZo7Rj8zpuUXZEJK3lJO65GCtfOn5pJJrVqmO3X2z_uiuULcU8pNp_Vl83M1umHGhCRH4ghO2b84nJInmMbdAASP4BMgOeQAA3lN0wtZDQMAgRjBT8SNgexPh2MbUownTHm8ac6jGxBu_9zXzfPXh6f19_bxx7fNevXY-o6bqVWw1VJGF0LsPd0Ko3qIzmyBsQhBc-ij8V5RKoTi2snQ015I4zUzgTnRietms3BDdnt7LOngymyzS_Z9kMvOulI3GcBSrkMFdzQa1nUAWpo-qsrTgRupfGXdL6xjyb9OgJPd51OpX4OWC8OUoaajVcUXlS8ZsUD8SGXUvvVglx5qHrXvPdi5msRiwioed1D-ov_j-g2k3IsR</recordid><startdate>20200419</startdate><enddate>20200419</enddate><creator>Jin, Yalin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20200419</creationdate><title>Analysis of a stochastic single species model with Allee effect and jump-diffusion</title><author>Jin, Yalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allee effect</topic><topic>Analysis</topic><topic>Computer simulation</topic><topic>Difference and Functional Equations</topic><topic>Diffusion effects</topic><topic>Extinction</topic><topic>Functional Analysis</topic><topic>Lévy jumps</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Stochastic permanence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Yalin</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Yalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a stochastic single species model with Allee effect and jump-diffusion</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2020-04-19</date><risdate>2020</risdate><volume>2020</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><artnum>165</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>In this paper, we consider the effects of the small and abrupt random perturbations in the environment, and formulate a stochastic single species model with Allee effect and jump-diffusion. We first prove that the model admits a unique solution which is global and positive. Then we study the stochastic permanence and extinction of the model. In addition, we estimate the growth rate of the solution. Our results reveal that the properties of the model have close relationships with the jump-diffusion. Finally, we work out several numerical simulations to validate the theoretical results.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-020-02631-y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1847 |
ispartof | Advances in difference equations, 2020-04, Vol.2020 (1), p.1-11, Article 165 |
issn | 1687-1847 1687-1839 1687-1847 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_028dbe140f9144ee8695f70538d2967c |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals |
subjects | Allee effect Analysis Computer simulation Difference and Functional Equations Diffusion effects Extinction Functional Analysis Lévy jumps Mathematical models Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Stochastic permanence |
title | Analysis of a stochastic single species model with Allee effect and jump-diffusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20stochastic%20single%20species%20model%20with%20Allee%20effect%20and%20jump-diffusion&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Jin,%20Yalin&rft.date=2020-04-19&rft.volume=2020&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.artnum=165&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-020-02631-y&rft_dat=%3Cproquest_doaj_%3E2391790940%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-7eb866faddf5c0b3975efa9be11fed82e5f9cc70033728a6d505369c819d1a343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2391790940&rft_id=info:pmid/&rfr_iscdi=true |