Loading…
Development of Chemiluminescent ELISA for Detection of Diisobutyl Phthalate in Water, Lettuce and Aquatic Organisms
The use of plasticizers to improve the quality of plastics widely used for household purposes inevitably leads to an increase in their pollution of food and environmental objects. Diisobutyl phthalate (DiBP) is one of the ortho-substituted phthalic acid esters that negatively affect human health and...
Saved in:
Published in: | Chemosensors 2023-07, Vol.11 (7), p.393 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of plasticizers to improve the quality of plastics widely used for household purposes inevitably leads to an increase in their pollution of food and environmental objects. Diisobutyl phthalate (DiBP) is one of the ortho-substituted phthalic acid esters that negatively affect human health and ecosystems. This work is directed to the development of a chemiluminescent enzyme immunoassay (CL-ELISA) for the determination of diisobutyl phthalate in water and food. Luminol, which is oxidized with hydrogen peroxide in the presence of p-iodophenol as an enhancer, was chosen as the substrate for horseradish peroxidase used as a label in the analysis. For this development, rabbit anti-DiBP polyclonal antibodies were generated and tested with the synthesized hapten–protein conjugate. The developed chemiluminescent ELISA has a detection limit of 1.8 ng/mL; the operating range was 5.0–170.8 ng/mL at a content of 10% methanol in the assay medium. The assay was successfully applied to detect diisobutyl phthalate in lettuce leaves, seafood, and water. When using extraction with methanol and hexane, the recovery of DiBP in samples varies in the range of 76.9–134.2%; for assays in natural waters, the recovery rates are from 79.5 to 113.4%. |
---|---|
ISSN: | 2227-9040 2227-9040 |
DOI: | 10.3390/chemosensors11070393 |