Loading…
Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study
Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities vis...
Saved in:
Published in: | Tomography (Ann Arbor) 2021-10, Vol.7 (4), p.650-674 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3 |
container_end_page | 674 |
container_issue | 4 |
container_start_page | 650 |
container_title | Tomography (Ann Arbor) |
container_volume | 7 |
creator | Martens, Corentin Lebrun, Laetitia Decaestecker, Christine Vandamme, Thomas Van Eycke, Yves-Rémi Rovai, Antonin Metens, Thierry Debeir, Olivier Goldman, Serge Salmon, Isabelle Van Simaeys, Gaetan |
description | Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities visible on magnetic resonance imaging (MRI). In this work, we verify these hypotheses by stereotactic histological analysis of a non-operated brain with glioblastoma using a 3D-printed slicer. Cell density maps are computed from histological slides using a deep learning approach. The density maps are then registered to a postmortem MR image and related to an MR-derived geodesic distance map to the tumor core. The relation between the edema outlines visible on T2-FLAIR MRI and the distance to the core is also investigated. Our results suggest that (i) the previously proposed exponential decrease of the tumor cell density with the distance to the core is reasonable but (ii) the edema outlines would not correspond to a cell density iso-contour and (iii) the suggested tumor cell density at these outlines is likely overestimated. These findings highlight the limitations of conventional MRI to derive glioma cell density maps and the need for other initialization methods for reaction-diffusion models to be used in clinical practice. |
doi_str_mv | 10.3390/tomography7040055 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02b74fec94b3407b81533beeee94a801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02b74fec94b3407b81533beeee94a801</doaj_id><sourcerecordid>2604467106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3</originalsourceid><addsrcrecordid>eNplkt9rFDEQx4MottT-Ab5IHuvDan7tJuuDcJx6XWgRahXfQrJJ7lKym2uyqxz4x5vr1dJiCGSY-c5nwswA8Bqjd5S26P0Uh7hOarvZccQQqutn4JhQ3laYtj-fP7KPwGnONwghgki5_CU4okwwIlB9DP50o5-8CnAZR1OsOMJFzjbnwY4TdDHBK6v6vb_65J2b816xCj4OCq5S_D1t4GU0NuQPcAGvkxpzUHt1IV5eddW5z1MMcb2DZ9349ocK3tyF4bdpNrtX4IVTIdvT-_cEfP_y-Xp5Xl18XXXLxUXVs6aeKuKcopwzrokiTWMwbxF1mDFsrLaIGOys4K3GWriaW0OpM043mhhttGWKnoDuwDVR3cht8oNKOxmVl3eOmNZSpcn3wUpENGfO9i3TlCGuBa4p1baclimBcGF9PLC2sx6s6UubkgpPoE8jo9_IdfwlRUNEK3gBnN0DUrydbZ7k4HNvQ1CjjXOWpEGMNRyjpkjxQdqnmHOy7qEMRnK_BPK_JSg5bx7_7yHj38jpX43Ss54</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604467106</pqid></control><display><type>article</type><title>Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study</title><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Martens, Corentin ; Lebrun, Laetitia ; Decaestecker, Christine ; Vandamme, Thomas ; Van Eycke, Yves-Rémi ; Rovai, Antonin ; Metens, Thierry ; Debeir, Olivier ; Goldman, Serge ; Salmon, Isabelle ; Van Simaeys, Gaetan</creator><creatorcontrib>Martens, Corentin ; Lebrun, Laetitia ; Decaestecker, Christine ; Vandamme, Thomas ; Van Eycke, Yves-Rémi ; Rovai, Antonin ; Metens, Thierry ; Debeir, Olivier ; Goldman, Serge ; Salmon, Isabelle ; Van Simaeys, Gaetan</creatorcontrib><description>Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities visible on magnetic resonance imaging (MRI). In this work, we verify these hypotheses by stereotactic histological analysis of a non-operated brain with glioblastoma using a 3D-printed slicer. Cell density maps are computed from histological slides using a deep learning approach. The density maps are then registered to a postmortem MR image and related to an MR-derived geodesic distance map to the tumor core. The relation between the edema outlines visible on T2-FLAIR MRI and the distance to the core is also investigated. Our results suggest that (i) the previously proposed exponential decrease of the tumor cell density with the distance to the core is reasonable but (ii) the edema outlines would not correspond to a cell density iso-contour and (iii) the suggested tumor cell density at these outlines is likely overestimated. These findings highlight the limitations of conventional MRI to derive glioma cell density maps and the need for other initialization methods for reaction-diffusion models to be used in clinical practice.</description><identifier>ISSN: 2379-139X</identifier><identifier>ISSN: 2379-1381</identifier><identifier>EISSN: 2379-139X</identifier><identifier>DOI: 10.3390/tomography7040055</identifier><identifier>PMID: 34842805</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - pathology ; cellularity ; Diffusion ; digital pathology ; Glioblastoma - diagnostic imaging ; glioma ; Glioma - diagnostic imaging ; Glioma - pathology ; histology ; Humans ; magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; reaction-diffusion model</subject><ispartof>Tomography (Ann Arbor), 2021-10, Vol.7 (4), p.650-674</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3</citedby><cites>FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3</cites><orcidid>0000-0002-7131-1784 ; 0000-0001-6781-5341 ; 0000-0002-5663-8180 ; 0000-0003-4527-2192 ; 0000-0003-2111-208X ; 0000-0002-9917-8735 ; 0000-0002-5495-1931 ; 0000-0002-6461-1551 ; 0000-0002-3404-7224 ; 0000-0002-2678-542X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628987/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628987/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34842805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martens, Corentin</creatorcontrib><creatorcontrib>Lebrun, Laetitia</creatorcontrib><creatorcontrib>Decaestecker, Christine</creatorcontrib><creatorcontrib>Vandamme, Thomas</creatorcontrib><creatorcontrib>Van Eycke, Yves-Rémi</creatorcontrib><creatorcontrib>Rovai, Antonin</creatorcontrib><creatorcontrib>Metens, Thierry</creatorcontrib><creatorcontrib>Debeir, Olivier</creatorcontrib><creatorcontrib>Goldman, Serge</creatorcontrib><creatorcontrib>Salmon, Isabelle</creatorcontrib><creatorcontrib>Van Simaeys, Gaetan</creatorcontrib><title>Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study</title><title>Tomography (Ann Arbor)</title><addtitle>Tomography</addtitle><description>Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities visible on magnetic resonance imaging (MRI). In this work, we verify these hypotheses by stereotactic histological analysis of a non-operated brain with glioblastoma using a 3D-printed slicer. Cell density maps are computed from histological slides using a deep learning approach. The density maps are then registered to a postmortem MR image and related to an MR-derived geodesic distance map to the tumor core. The relation between the edema outlines visible on T2-FLAIR MRI and the distance to the core is also investigated. Our results suggest that (i) the previously proposed exponential decrease of the tumor cell density with the distance to the core is reasonable but (ii) the edema outlines would not correspond to a cell density iso-contour and (iii) the suggested tumor cell density at these outlines is likely overestimated. These findings highlight the limitations of conventional MRI to derive glioma cell density maps and the need for other initialization methods for reaction-diffusion models to be used in clinical practice.</description><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - pathology</subject><subject>cellularity</subject><subject>Diffusion</subject><subject>digital pathology</subject><subject>Glioblastoma - diagnostic imaging</subject><subject>glioma</subject><subject>Glioma - diagnostic imaging</subject><subject>Glioma - pathology</subject><subject>histology</subject><subject>Humans</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>reaction-diffusion model</subject><issn>2379-139X</issn><issn>2379-1381</issn><issn>2379-139X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkt9rFDEQx4MottT-Ab5IHuvDan7tJuuDcJx6XWgRahXfQrJJ7lKym2uyqxz4x5vr1dJiCGSY-c5nwswA8Bqjd5S26P0Uh7hOarvZccQQqutn4JhQ3laYtj-fP7KPwGnONwghgki5_CU4okwwIlB9DP50o5-8CnAZR1OsOMJFzjbnwY4TdDHBK6v6vb_65J2b816xCj4OCq5S_D1t4GU0NuQPcAGvkxpzUHt1IV5eddW5z1MMcb2DZ9349ocK3tyF4bdpNrtX4IVTIdvT-_cEfP_y-Xp5Xl18XXXLxUXVs6aeKuKcopwzrokiTWMwbxF1mDFsrLaIGOys4K3GWriaW0OpM043mhhttGWKnoDuwDVR3cht8oNKOxmVl3eOmNZSpcn3wUpENGfO9i3TlCGuBa4p1baclimBcGF9PLC2sx6s6UubkgpPoE8jo9_IdfwlRUNEK3gBnN0DUrydbZ7k4HNvQ1CjjXOWpEGMNRyjpkjxQdqnmHOy7qEMRnK_BPK_JSg5bx7_7yHj38jpX43Ss54</recordid><startdate>20211029</startdate><enddate>20211029</enddate><creator>Martens, Corentin</creator><creator>Lebrun, Laetitia</creator><creator>Decaestecker, Christine</creator><creator>Vandamme, Thomas</creator><creator>Van Eycke, Yves-Rémi</creator><creator>Rovai, Antonin</creator><creator>Metens, Thierry</creator><creator>Debeir, Olivier</creator><creator>Goldman, Serge</creator><creator>Salmon, Isabelle</creator><creator>Van Simaeys, Gaetan</creator><general>MDPI</general><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7131-1784</orcidid><orcidid>https://orcid.org/0000-0001-6781-5341</orcidid><orcidid>https://orcid.org/0000-0002-5663-8180</orcidid><orcidid>https://orcid.org/0000-0003-4527-2192</orcidid><orcidid>https://orcid.org/0000-0003-2111-208X</orcidid><orcidid>https://orcid.org/0000-0002-9917-8735</orcidid><orcidid>https://orcid.org/0000-0002-5495-1931</orcidid><orcidid>https://orcid.org/0000-0002-6461-1551</orcidid><orcidid>https://orcid.org/0000-0002-3404-7224</orcidid><orcidid>https://orcid.org/0000-0002-2678-542X</orcidid></search><sort><creationdate>20211029</creationdate><title>Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study</title><author>Martens, Corentin ; Lebrun, Laetitia ; Decaestecker, Christine ; Vandamme, Thomas ; Van Eycke, Yves-Rémi ; Rovai, Antonin ; Metens, Thierry ; Debeir, Olivier ; Goldman, Serge ; Salmon, Isabelle ; Van Simaeys, Gaetan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - pathology</topic><topic>cellularity</topic><topic>Diffusion</topic><topic>digital pathology</topic><topic>Glioblastoma - diagnostic imaging</topic><topic>glioma</topic><topic>Glioma - diagnostic imaging</topic><topic>Glioma - pathology</topic><topic>histology</topic><topic>Humans</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>reaction-diffusion model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martens, Corentin</creatorcontrib><creatorcontrib>Lebrun, Laetitia</creatorcontrib><creatorcontrib>Decaestecker, Christine</creatorcontrib><creatorcontrib>Vandamme, Thomas</creatorcontrib><creatorcontrib>Van Eycke, Yves-Rémi</creatorcontrib><creatorcontrib>Rovai, Antonin</creatorcontrib><creatorcontrib>Metens, Thierry</creatorcontrib><creatorcontrib>Debeir, Olivier</creatorcontrib><creatorcontrib>Goldman, Serge</creatorcontrib><creatorcontrib>Salmon, Isabelle</creatorcontrib><creatorcontrib>Van Simaeys, Gaetan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Tomography (Ann Arbor)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martens, Corentin</au><au>Lebrun, Laetitia</au><au>Decaestecker, Christine</au><au>Vandamme, Thomas</au><au>Van Eycke, Yves-Rémi</au><au>Rovai, Antonin</au><au>Metens, Thierry</au><au>Debeir, Olivier</au><au>Goldman, Serge</au><au>Salmon, Isabelle</au><au>Van Simaeys, Gaetan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study</atitle><jtitle>Tomography (Ann Arbor)</jtitle><addtitle>Tomography</addtitle><date>2021-10-29</date><risdate>2021</risdate><volume>7</volume><issue>4</issue><spage>650</spage><epage>674</epage><pages>650-674</pages><issn>2379-139X</issn><issn>2379-1381</issn><eissn>2379-139X</eissn><abstract>Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities visible on magnetic resonance imaging (MRI). In this work, we verify these hypotheses by stereotactic histological analysis of a non-operated brain with glioblastoma using a 3D-printed slicer. Cell density maps are computed from histological slides using a deep learning approach. The density maps are then registered to a postmortem MR image and related to an MR-derived geodesic distance map to the tumor core. The relation between the edema outlines visible on T2-FLAIR MRI and the distance to the core is also investigated. Our results suggest that (i) the previously proposed exponential decrease of the tumor cell density with the distance to the core is reasonable but (ii) the edema outlines would not correspond to a cell density iso-contour and (iii) the suggested tumor cell density at these outlines is likely overestimated. These findings highlight the limitations of conventional MRI to derive glioma cell density maps and the need for other initialization methods for reaction-diffusion models to be used in clinical practice.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>34842805</pmid><doi>10.3390/tomography7040055</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-7131-1784</orcidid><orcidid>https://orcid.org/0000-0001-6781-5341</orcidid><orcidid>https://orcid.org/0000-0002-5663-8180</orcidid><orcidid>https://orcid.org/0000-0003-4527-2192</orcidid><orcidid>https://orcid.org/0000-0003-2111-208X</orcidid><orcidid>https://orcid.org/0000-0002-9917-8735</orcidid><orcidid>https://orcid.org/0000-0002-5495-1931</orcidid><orcidid>https://orcid.org/0000-0002-6461-1551</orcidid><orcidid>https://orcid.org/0000-0002-3404-7224</orcidid><orcidid>https://orcid.org/0000-0002-2678-542X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2379-139X |
ispartof | Tomography (Ann Arbor), 2021-10, Vol.7 (4), p.650-674 |
issn | 2379-139X 2379-1381 2379-139X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_02b74fec94b3407b81533beeee94a801 |
source | PubMed Central; EZB Electronic Journals Library |
subjects | Brain Neoplasms - diagnostic imaging Brain Neoplasms - pathology cellularity Diffusion digital pathology Glioblastoma - diagnostic imaging glioma Glioma - diagnostic imaging Glioma - pathology histology Humans magnetic resonance imaging Magnetic Resonance Imaging - methods reaction-diffusion model |
title | Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20Condition%20Assessment%20for%20Reaction-Diffusion%20Glioma%20Growth%20Models:%20A%20Translational%20MRI-Histology%20(In)Validation%20Study&rft.jtitle=Tomography%20(Ann%20Arbor)&rft.au=Martens,%20Corentin&rft.date=2021-10-29&rft.volume=7&rft.issue=4&rft.spage=650&rft.epage=674&rft.pages=650-674&rft.issn=2379-139X&rft.eissn=2379-139X&rft_id=info:doi/10.3390/tomography7040055&rft_dat=%3Cproquest_doaj_%3E2604467106%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604467106&rft_id=info:pmid/34842805&rfr_iscdi=true |