Loading…

Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study

Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities vis...

Full description

Saved in:
Bibliographic Details
Published in:Tomography (Ann Arbor) 2021-10, Vol.7 (4), p.650-674
Main Authors: Martens, Corentin, Lebrun, Laetitia, Decaestecker, Christine, Vandamme, Thomas, Van Eycke, Yves-Rémi, Rovai, Antonin, Metens, Thierry, Debeir, Olivier, Goldman, Serge, Salmon, Isabelle, Van Simaeys, Gaetan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3
cites cdi_FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3
container_end_page 674
container_issue 4
container_start_page 650
container_title Tomography (Ann Arbor)
container_volume 7
creator Martens, Corentin
Lebrun, Laetitia
Decaestecker, Christine
Vandamme, Thomas
Van Eycke, Yves-Rémi
Rovai, Antonin
Metens, Thierry
Debeir, Olivier
Goldman, Serge
Salmon, Isabelle
Van Simaeys, Gaetan
description Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities visible on magnetic resonance imaging (MRI). In this work, we verify these hypotheses by stereotactic histological analysis of a non-operated brain with glioblastoma using a 3D-printed slicer. Cell density maps are computed from histological slides using a deep learning approach. The density maps are then registered to a postmortem MR image and related to an MR-derived geodesic distance map to the tumor core. The relation between the edema outlines visible on T2-FLAIR MRI and the distance to the core is also investigated. Our results suggest that (i) the previously proposed exponential decrease of the tumor cell density with the distance to the core is reasonable but (ii) the edema outlines would not correspond to a cell density iso-contour and (iii) the suggested tumor cell density at these outlines is likely overestimated. These findings highlight the limitations of conventional MRI to derive glioma cell density maps and the need for other initialization methods for reaction-diffusion models to be used in clinical practice.
doi_str_mv 10.3390/tomography7040055
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02b74fec94b3407b81533beeee94a801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02b74fec94b3407b81533beeee94a801</doaj_id><sourcerecordid>2604467106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3</originalsourceid><addsrcrecordid>eNplkt9rFDEQx4MottT-Ab5IHuvDan7tJuuDcJx6XWgRahXfQrJJ7lKym2uyqxz4x5vr1dJiCGSY-c5nwswA8Bqjd5S26P0Uh7hOarvZccQQqutn4JhQ3laYtj-fP7KPwGnONwghgki5_CU4okwwIlB9DP50o5-8CnAZR1OsOMJFzjbnwY4TdDHBK6v6vb_65J2b816xCj4OCq5S_D1t4GU0NuQPcAGvkxpzUHt1IV5eddW5z1MMcb2DZ9349ocK3tyF4bdpNrtX4IVTIdvT-_cEfP_y-Xp5Xl18XXXLxUXVs6aeKuKcopwzrokiTWMwbxF1mDFsrLaIGOys4K3GWriaW0OpM043mhhttGWKnoDuwDVR3cht8oNKOxmVl3eOmNZSpcn3wUpENGfO9i3TlCGuBa4p1baclimBcGF9PLC2sx6s6UubkgpPoE8jo9_IdfwlRUNEK3gBnN0DUrydbZ7k4HNvQ1CjjXOWpEGMNRyjpkjxQdqnmHOy7qEMRnK_BPK_JSg5bx7_7yHj38jpX43Ss54</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604467106</pqid></control><display><type>article</type><title>Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study</title><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Martens, Corentin ; Lebrun, Laetitia ; Decaestecker, Christine ; Vandamme, Thomas ; Van Eycke, Yves-Rémi ; Rovai, Antonin ; Metens, Thierry ; Debeir, Olivier ; Goldman, Serge ; Salmon, Isabelle ; Van Simaeys, Gaetan</creator><creatorcontrib>Martens, Corentin ; Lebrun, Laetitia ; Decaestecker, Christine ; Vandamme, Thomas ; Van Eycke, Yves-Rémi ; Rovai, Antonin ; Metens, Thierry ; Debeir, Olivier ; Goldman, Serge ; Salmon, Isabelle ; Van Simaeys, Gaetan</creatorcontrib><description>Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities visible on magnetic resonance imaging (MRI). In this work, we verify these hypotheses by stereotactic histological analysis of a non-operated brain with glioblastoma using a 3D-printed slicer. Cell density maps are computed from histological slides using a deep learning approach. The density maps are then registered to a postmortem MR image and related to an MR-derived geodesic distance map to the tumor core. The relation between the edema outlines visible on T2-FLAIR MRI and the distance to the core is also investigated. Our results suggest that (i) the previously proposed exponential decrease of the tumor cell density with the distance to the core is reasonable but (ii) the edema outlines would not correspond to a cell density iso-contour and (iii) the suggested tumor cell density at these outlines is likely overestimated. These findings highlight the limitations of conventional MRI to derive glioma cell density maps and the need for other initialization methods for reaction-diffusion models to be used in clinical practice.</description><identifier>ISSN: 2379-139X</identifier><identifier>ISSN: 2379-1381</identifier><identifier>EISSN: 2379-139X</identifier><identifier>DOI: 10.3390/tomography7040055</identifier><identifier>PMID: 34842805</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>Brain Neoplasms - diagnostic imaging ; Brain Neoplasms - pathology ; cellularity ; Diffusion ; digital pathology ; Glioblastoma - diagnostic imaging ; glioma ; Glioma - diagnostic imaging ; Glioma - pathology ; histology ; Humans ; magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; reaction-diffusion model</subject><ispartof>Tomography (Ann Arbor), 2021-10, Vol.7 (4), p.650-674</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3</citedby><cites>FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3</cites><orcidid>0000-0002-7131-1784 ; 0000-0001-6781-5341 ; 0000-0002-5663-8180 ; 0000-0003-4527-2192 ; 0000-0003-2111-208X ; 0000-0002-9917-8735 ; 0000-0002-5495-1931 ; 0000-0002-6461-1551 ; 0000-0002-3404-7224 ; 0000-0002-2678-542X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628987/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8628987/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34842805$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Martens, Corentin</creatorcontrib><creatorcontrib>Lebrun, Laetitia</creatorcontrib><creatorcontrib>Decaestecker, Christine</creatorcontrib><creatorcontrib>Vandamme, Thomas</creatorcontrib><creatorcontrib>Van Eycke, Yves-Rémi</creatorcontrib><creatorcontrib>Rovai, Antonin</creatorcontrib><creatorcontrib>Metens, Thierry</creatorcontrib><creatorcontrib>Debeir, Olivier</creatorcontrib><creatorcontrib>Goldman, Serge</creatorcontrib><creatorcontrib>Salmon, Isabelle</creatorcontrib><creatorcontrib>Van Simaeys, Gaetan</creatorcontrib><title>Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study</title><title>Tomography (Ann Arbor)</title><addtitle>Tomography</addtitle><description>Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities visible on magnetic resonance imaging (MRI). In this work, we verify these hypotheses by stereotactic histological analysis of a non-operated brain with glioblastoma using a 3D-printed slicer. Cell density maps are computed from histological slides using a deep learning approach. The density maps are then registered to a postmortem MR image and related to an MR-derived geodesic distance map to the tumor core. The relation between the edema outlines visible on T2-FLAIR MRI and the distance to the core is also investigated. Our results suggest that (i) the previously proposed exponential decrease of the tumor cell density with the distance to the core is reasonable but (ii) the edema outlines would not correspond to a cell density iso-contour and (iii) the suggested tumor cell density at these outlines is likely overestimated. These findings highlight the limitations of conventional MRI to derive glioma cell density maps and the need for other initialization methods for reaction-diffusion models to be used in clinical practice.</description><subject>Brain Neoplasms - diagnostic imaging</subject><subject>Brain Neoplasms - pathology</subject><subject>cellularity</subject><subject>Diffusion</subject><subject>digital pathology</subject><subject>Glioblastoma - diagnostic imaging</subject><subject>glioma</subject><subject>Glioma - diagnostic imaging</subject><subject>Glioma - pathology</subject><subject>histology</subject><subject>Humans</subject><subject>magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>reaction-diffusion model</subject><issn>2379-139X</issn><issn>2379-1381</issn><issn>2379-139X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplkt9rFDEQx4MottT-Ab5IHuvDan7tJuuDcJx6XWgRahXfQrJJ7lKym2uyqxz4x5vr1dJiCGSY-c5nwswA8Bqjd5S26P0Uh7hOarvZccQQqutn4JhQ3laYtj-fP7KPwGnONwghgki5_CU4okwwIlB9DP50o5-8CnAZR1OsOMJFzjbnwY4TdDHBK6v6vb_65J2b816xCj4OCq5S_D1t4GU0NuQPcAGvkxpzUHt1IV5eddW5z1MMcb2DZ9349ocK3tyF4bdpNrtX4IVTIdvT-_cEfP_y-Xp5Xl18XXXLxUXVs6aeKuKcopwzrokiTWMwbxF1mDFsrLaIGOys4K3GWriaW0OpM043mhhttGWKnoDuwDVR3cht8oNKOxmVl3eOmNZSpcn3wUpENGfO9i3TlCGuBa4p1baclimBcGF9PLC2sx6s6UubkgpPoE8jo9_IdfwlRUNEK3gBnN0DUrydbZ7k4HNvQ1CjjXOWpEGMNRyjpkjxQdqnmHOy7qEMRnK_BPK_JSg5bx7_7yHj38jpX43Ss54</recordid><startdate>20211029</startdate><enddate>20211029</enddate><creator>Martens, Corentin</creator><creator>Lebrun, Laetitia</creator><creator>Decaestecker, Christine</creator><creator>Vandamme, Thomas</creator><creator>Van Eycke, Yves-Rémi</creator><creator>Rovai, Antonin</creator><creator>Metens, Thierry</creator><creator>Debeir, Olivier</creator><creator>Goldman, Serge</creator><creator>Salmon, Isabelle</creator><creator>Van Simaeys, Gaetan</creator><general>MDPI</general><general>MDPI AG</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7131-1784</orcidid><orcidid>https://orcid.org/0000-0001-6781-5341</orcidid><orcidid>https://orcid.org/0000-0002-5663-8180</orcidid><orcidid>https://orcid.org/0000-0003-4527-2192</orcidid><orcidid>https://orcid.org/0000-0003-2111-208X</orcidid><orcidid>https://orcid.org/0000-0002-9917-8735</orcidid><orcidid>https://orcid.org/0000-0002-5495-1931</orcidid><orcidid>https://orcid.org/0000-0002-6461-1551</orcidid><orcidid>https://orcid.org/0000-0002-3404-7224</orcidid><orcidid>https://orcid.org/0000-0002-2678-542X</orcidid></search><sort><creationdate>20211029</creationdate><title>Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study</title><author>Martens, Corentin ; Lebrun, Laetitia ; Decaestecker, Christine ; Vandamme, Thomas ; Van Eycke, Yves-Rémi ; Rovai, Antonin ; Metens, Thierry ; Debeir, Olivier ; Goldman, Serge ; Salmon, Isabelle ; Van Simaeys, Gaetan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Brain Neoplasms - diagnostic imaging</topic><topic>Brain Neoplasms - pathology</topic><topic>cellularity</topic><topic>Diffusion</topic><topic>digital pathology</topic><topic>Glioblastoma - diagnostic imaging</topic><topic>glioma</topic><topic>Glioma - diagnostic imaging</topic><topic>Glioma - pathology</topic><topic>histology</topic><topic>Humans</topic><topic>magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>reaction-diffusion model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martens, Corentin</creatorcontrib><creatorcontrib>Lebrun, Laetitia</creatorcontrib><creatorcontrib>Decaestecker, Christine</creatorcontrib><creatorcontrib>Vandamme, Thomas</creatorcontrib><creatorcontrib>Van Eycke, Yves-Rémi</creatorcontrib><creatorcontrib>Rovai, Antonin</creatorcontrib><creatorcontrib>Metens, Thierry</creatorcontrib><creatorcontrib>Debeir, Olivier</creatorcontrib><creatorcontrib>Goldman, Serge</creatorcontrib><creatorcontrib>Salmon, Isabelle</creatorcontrib><creatorcontrib>Van Simaeys, Gaetan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Tomography (Ann Arbor)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martens, Corentin</au><au>Lebrun, Laetitia</au><au>Decaestecker, Christine</au><au>Vandamme, Thomas</au><au>Van Eycke, Yves-Rémi</au><au>Rovai, Antonin</au><au>Metens, Thierry</au><au>Debeir, Olivier</au><au>Goldman, Serge</au><au>Salmon, Isabelle</au><au>Van Simaeys, Gaetan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study</atitle><jtitle>Tomography (Ann Arbor)</jtitle><addtitle>Tomography</addtitle><date>2021-10-29</date><risdate>2021</risdate><volume>7</volume><issue>4</issue><spage>650</spage><epage>674</epage><pages>650-674</pages><issn>2379-139X</issn><issn>2379-1381</issn><eissn>2379-139X</eissn><abstract>Reaction-diffusion models have been proposed for decades to capture the growth of gliomas. Nevertheless, these models require an initial condition: the tumor cell density distribution over the whole brain at diagnosis time. Several works have proposed to relate this distribution to abnormalities visible on magnetic resonance imaging (MRI). In this work, we verify these hypotheses by stereotactic histological analysis of a non-operated brain with glioblastoma using a 3D-printed slicer. Cell density maps are computed from histological slides using a deep learning approach. The density maps are then registered to a postmortem MR image and related to an MR-derived geodesic distance map to the tumor core. The relation between the edema outlines visible on T2-FLAIR MRI and the distance to the core is also investigated. Our results suggest that (i) the previously proposed exponential decrease of the tumor cell density with the distance to the core is reasonable but (ii) the edema outlines would not correspond to a cell density iso-contour and (iii) the suggested tumor cell density at these outlines is likely overestimated. These findings highlight the limitations of conventional MRI to derive glioma cell density maps and the need for other initialization methods for reaction-diffusion models to be used in clinical practice.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>34842805</pmid><doi>10.3390/tomography7040055</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-7131-1784</orcidid><orcidid>https://orcid.org/0000-0001-6781-5341</orcidid><orcidid>https://orcid.org/0000-0002-5663-8180</orcidid><orcidid>https://orcid.org/0000-0003-4527-2192</orcidid><orcidid>https://orcid.org/0000-0003-2111-208X</orcidid><orcidid>https://orcid.org/0000-0002-9917-8735</orcidid><orcidid>https://orcid.org/0000-0002-5495-1931</orcidid><orcidid>https://orcid.org/0000-0002-6461-1551</orcidid><orcidid>https://orcid.org/0000-0002-3404-7224</orcidid><orcidid>https://orcid.org/0000-0002-2678-542X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2379-139X
ispartof Tomography (Ann Arbor), 2021-10, Vol.7 (4), p.650-674
issn 2379-139X
2379-1381
2379-139X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_02b74fec94b3407b81533beeee94a801
source PubMed Central; EZB Electronic Journals Library
subjects Brain Neoplasms - diagnostic imaging
Brain Neoplasms - pathology
cellularity
Diffusion
digital pathology
Glioblastoma - diagnostic imaging
glioma
Glioma - diagnostic imaging
Glioma - pathology
histology
Humans
magnetic resonance imaging
Magnetic Resonance Imaging - methods
reaction-diffusion model
title Initial Condition Assessment for Reaction-Diffusion Glioma Growth Models: A Translational MRI-Histology (In)Validation Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initial%20Condition%20Assessment%20for%20Reaction-Diffusion%20Glioma%20Growth%20Models:%20A%20Translational%20MRI-Histology%20(In)Validation%20Study&rft.jtitle=Tomography%20(Ann%20Arbor)&rft.au=Martens,%20Corentin&rft.date=2021-10-29&rft.volume=7&rft.issue=4&rft.spage=650&rft.epage=674&rft.pages=650-674&rft.issn=2379-139X&rft.eissn=2379-139X&rft_id=info:doi/10.3390/tomography7040055&rft_dat=%3Cproquest_doaj_%3E2604467106%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-2ffa37747b2a266d17903f1441debe02d1fe879b1b8f57ed33fdfb6b2dbdbe4a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604467106&rft_id=info:pmid/34842805&rfr_iscdi=true