Loading…
A New Constitutive Model for AZ31B Magnesium Alloy Sheet Deformed at Elevated Temperatures and Various Strain Rates
In this study, a new constitutive model is established for AZ31B magnesium alloy sheet at elevated temperatures and strain rates in order to describe two competing mechanisms for deformation, i.e. both work-hardening and softening stage of AZ31B magnesium alloy sheet. Stress-strain curves obtained b...
Saved in:
Published in: | High temperature materials and processes 2014-12, Vol.33 (6), p.499-508 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this study, a new constitutive model is established for AZ31B magnesium alloy sheet at elevated temperatures and strain rates in order to describe two competing mechanisms for deformation, i.e. both work-hardening and softening stage of AZ31B magnesium alloy sheet. Stress-strain curves obtained by conducting uni-axial tensile tests at elevated and strain rates were first separated at the maximum stress and corresponding strain values. Voce's law [25] was then employed to fit separated hardening and softening stage. A MATLAB tool is used to determine material parameters by using least square fitting method at various temperatures and strain rate. The mergence of separated work-hardening and softening equations is in good agreement with experimental data. The parameters of fitting curves are utilized to determine them as a function of temperature and strain rate using a surface fitting method. The final equation is then implemented to predict stress-strain curves at various temperatures and strain rates. The proposed equation showed the good comparability between the simulation results and the corresponding experiments. |
---|---|
ISSN: | 0334-6455 2191-0324 |
DOI: | 10.1515/htmp-2013-0109 |