Loading…

Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM

This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) & modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovati...

Full description

Saved in:
Bibliographic Details
Published in:CSEE Journal of Power and Energy Systems 2024-03, Vol.10 (2), p.672-685
Main Authors: Ali Abdo, Hongshun Liu, Yousif Mahmoud, Hongru Zhang, Ying Sun, Qingquan Li, Jian Guo
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 685
container_issue 2
container_start_page 672
container_title CSEE Journal of Power and Energy Systems
container_volume 10
creator Ali Abdo
Hongshun Liu
Yousif Mahmoud
Hongru Zhang
Ying Sun
Qingquan Li
Jian Guo
description This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) & modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovation in this paper is shown in terms of solving the predicaments of outliers, boundary proportion, and unequal data existing in both traditional and intelligence models. Taking into consideration the closeness of dissolved gas analysis (DGA) data, the C-set method is implemented to subset the DGA data samples based on their type of faults within unrepeated subsets. Then, the MFCM is used for removing outliers from DGA samples by combining highly similar data for every subset within the same cluster to obtain the optimized training data (OTD) set. It is also used to minimize dimensionality of DGA samples and the uncertainty of transformer condition monitoring. After that, the optimized MCSVM is trained by using the (OTD). The proposed model diagnosis accuracy is 93.3%. The obtained results indicate that our model significantly improves the fault identification accuracy in power transformers when compared with other conventional and intelligence models.
doi_str_mv 10.17775/CSEEJPES.2020.04010
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a</doaj_id><sourcerecordid>oai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a</sourcerecordid><originalsourceid>FETCH-LOGICAL-d221t-729f00f2d6a6e18e0ccfa6d50ab60f161613c804053f1ed6fa71a7384146ffa83</originalsourceid><addsrcrecordid>eNotUF1LwzAUzYOCY-4f-JA_0HmTtkn7KKFzkxUH3Xwtt00yMrpGkors31tUzsP5gHvhHEKeGKyZlDJ_Vk1VvR2qZs2BwxoyYHBHFhxKkQBk_IGsYrwAAC9yySFbkGZ764LTtPbaDNRbevDfJtBjwDFaH66z3uDXMFE1YIzOuh4n50d6im48U5VEM1Ec5_uNqmlCa9V81I_k3uIQzeqfl-S0qY5qm-zfX3fqZZ9oztmUSF5aAMu1QGFYYaDvLQqdA3YCLBMz0r6YO-SpZUYLi5KhTIuMZcJaLNIl2f391R4v7WdwVwy31qNrfwMfzi2GyfWDaYH3piihLMreZrPppJbItDZc6HkOTH8AaZNdEw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM</title><source>IEEE Xplore All Journals</source><source>Publicly Available Content Database</source><creator>Ali Abdo ; Hongshun Liu ; Yousif Mahmoud ; Hongru Zhang ; Ying Sun ; Qingquan Li ; Jian Guo</creator><creatorcontrib>Ali Abdo ; Hongshun Liu ; Yousif Mahmoud ; Hongru Zhang ; Ying Sun ; Qingquan Li ; Jian Guo</creatorcontrib><description>This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) &amp; modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovation in this paper is shown in terms of solving the predicaments of outliers, boundary proportion, and unequal data existing in both traditional and intelligence models. Taking into consideration the closeness of dissolved gas analysis (DGA) data, the C-set method is implemented to subset the DGA data samples based on their type of faults within unrepeated subsets. Then, the MFCM is used for removing outliers from DGA samples by combining highly similar data for every subset within the same cluster to obtain the optimized training data (OTD) set. It is also used to minimize dimensionality of DGA samples and the uncertainty of transformer condition monitoring. After that, the optimized MCSVM is trained by using the (OTD). The proposed model diagnosis accuracy is 93.3%. The obtained results indicate that our model significantly improves the fault identification accuracy in power transformers when compared with other conventional and intelligence models.</description><identifier>ISSN: 2096-0042</identifier><identifier>DOI: 10.17775/CSEEJPES.2020.04010</identifier><language>eng</language><publisher>China electric power research institute</publisher><subject>Combination subset of set (C-set) method ; modified fuzzy C-means (MFCM) ; optimizable multiclass-SVM (MCSVM) ; optimized training data (OTD)</subject><ispartof>CSEE Journal of Power and Energy Systems, 2024-03, Vol.10 (2), p.672-685</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2103-2020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ali Abdo</creatorcontrib><creatorcontrib>Hongshun Liu</creatorcontrib><creatorcontrib>Yousif Mahmoud</creatorcontrib><creatorcontrib>Hongru Zhang</creatorcontrib><creatorcontrib>Ying Sun</creatorcontrib><creatorcontrib>Qingquan Li</creatorcontrib><creatorcontrib>Jian Guo</creatorcontrib><title>Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM</title><title>CSEE Journal of Power and Energy Systems</title><description>This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) &amp; modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovation in this paper is shown in terms of solving the predicaments of outliers, boundary proportion, and unequal data existing in both traditional and intelligence models. Taking into consideration the closeness of dissolved gas analysis (DGA) data, the C-set method is implemented to subset the DGA data samples based on their type of faults within unrepeated subsets. Then, the MFCM is used for removing outliers from DGA samples by combining highly similar data for every subset within the same cluster to obtain the optimized training data (OTD) set. It is also used to minimize dimensionality of DGA samples and the uncertainty of transformer condition monitoring. After that, the optimized MCSVM is trained by using the (OTD). The proposed model diagnosis accuracy is 93.3%. The obtained results indicate that our model significantly improves the fault identification accuracy in power transformers when compared with other conventional and intelligence models.</description><subject>Combination subset of set (C-set) method</subject><subject>modified fuzzy C-means (MFCM)</subject><subject>optimizable multiclass-SVM (MCSVM)</subject><subject>optimized training data (OTD)</subject><issn>2096-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotUF1LwzAUzYOCY-4f-JA_0HmTtkn7KKFzkxUH3Xwtt00yMrpGkors31tUzsP5gHvhHEKeGKyZlDJ_Vk1VvR2qZs2BwxoyYHBHFhxKkQBk_IGsYrwAAC9yySFbkGZ764LTtPbaDNRbevDfJtBjwDFaH66z3uDXMFE1YIzOuh4n50d6im48U5VEM1Ec5_uNqmlCa9V81I_k3uIQzeqfl-S0qY5qm-zfX3fqZZ9oztmUSF5aAMu1QGFYYaDvLQqdA3YCLBMz0r6YO-SpZUYLi5KhTIuMZcJaLNIl2f391R4v7WdwVwy31qNrfwMfzi2GyfWDaYH3piihLMreZrPppJbItDZc6HkOTH8AaZNdEw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Ali Abdo</creator><creator>Hongshun Liu</creator><creator>Yousif Mahmoud</creator><creator>Hongru Zhang</creator><creator>Ying Sun</creator><creator>Qingquan Li</creator><creator>Jian Guo</creator><general>China electric power research institute</general><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2103-2020</orcidid></search><sort><creationdate>20240301</creationdate><title>Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM</title><author>Ali Abdo ; Hongshun Liu ; Yousif Mahmoud ; Hongru Zhang ; Ying Sun ; Qingquan Li ; Jian Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d221t-729f00f2d6a6e18e0ccfa6d50ab60f161613c804053f1ed6fa71a7384146ffa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combination subset of set (C-set) method</topic><topic>modified fuzzy C-means (MFCM)</topic><topic>optimizable multiclass-SVM (MCSVM)</topic><topic>optimized training data (OTD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali Abdo</creatorcontrib><creatorcontrib>Hongshun Liu</creatorcontrib><creatorcontrib>Yousif Mahmoud</creatorcontrib><creatorcontrib>Hongru Zhang</creatorcontrib><creatorcontrib>Ying Sun</creatorcontrib><creatorcontrib>Qingquan Li</creatorcontrib><creatorcontrib>Jian Guo</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>CSEE Journal of Power and Energy Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali Abdo</au><au>Hongshun Liu</au><au>Yousif Mahmoud</au><au>Hongru Zhang</au><au>Ying Sun</au><au>Qingquan Li</au><au>Jian Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM</atitle><jtitle>CSEE Journal of Power and Energy Systems</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>10</volume><issue>2</issue><spage>672</spage><epage>685</epage><pages>672-685</pages><issn>2096-0042</issn><abstract>This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) &amp; modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovation in this paper is shown in terms of solving the predicaments of outliers, boundary proportion, and unequal data existing in both traditional and intelligence models. Taking into consideration the closeness of dissolved gas analysis (DGA) data, the C-set method is implemented to subset the DGA data samples based on their type of faults within unrepeated subsets. Then, the MFCM is used for removing outliers from DGA samples by combining highly similar data for every subset within the same cluster to obtain the optimized training data (OTD) set. It is also used to minimize dimensionality of DGA samples and the uncertainty of transformer condition monitoring. After that, the optimized MCSVM is trained by using the (OTD). The proposed model diagnosis accuracy is 93.3%. The obtained results indicate that our model significantly improves the fault identification accuracy in power transformers when compared with other conventional and intelligence models.</abstract><pub>China electric power research institute</pub><doi>10.17775/CSEEJPES.2020.04010</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2103-2020</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2096-0042
ispartof CSEE Journal of Power and Energy Systems, 2024-03, Vol.10 (2), p.672-685
issn 2096-0042
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a
source IEEE Xplore All Journals; Publicly Available Content Database
subjects Combination subset of set (C-set) method
modified fuzzy C-means (MFCM)
optimizable multiclass-SVM (MCSVM)
optimized training data (OTD)
title Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Model%20of%20Power%20Transformer%20Fault%20Classification%20Using%20C-set%20and%20MFCM%20-%20MCSVM&rft.jtitle=CSEE%20Journal%20of%20Power%20and%20Energy%20Systems&rft.au=Ali%20Abdo&rft.date=2024-03-01&rft.volume=10&rft.issue=2&rft.spage=672&rft.epage=685&rft.pages=672-685&rft.issn=2096-0042&rft_id=info:doi/10.17775/CSEEJPES.2020.04010&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d221t-729f00f2d6a6e18e0ccfa6d50ab60f161613c804053f1ed6fa71a7384146ffa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true