Loading…
Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM
This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) & modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovati...
Saved in:
Published in: | CSEE Journal of Power and Energy Systems 2024-03, Vol.10 (2), p.672-685 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 685 |
container_issue | 2 |
container_start_page | 672 |
container_title | CSEE Journal of Power and Energy Systems |
container_volume | 10 |
creator | Ali Abdo Hongshun Liu Yousif Mahmoud Hongru Zhang Ying Sun Qingquan Li Jian Guo |
description | This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) & modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovation in this paper is shown in terms of solving the predicaments of outliers, boundary proportion, and unequal data existing in both traditional and intelligence models. Taking into consideration the closeness of dissolved gas analysis (DGA) data, the C-set method is implemented to subset the DGA data samples based on their type of faults within unrepeated subsets. Then, the MFCM is used for removing outliers from DGA samples by combining highly similar data for every subset within the same cluster to obtain the optimized training data (OTD) set. It is also used to minimize dimensionality of DGA samples and the uncertainty of transformer condition monitoring. After that, the optimized MCSVM is trained by using the (OTD). The proposed model diagnosis accuracy is 93.3%. The obtained results indicate that our model significantly improves the fault identification accuracy in power transformers when compared with other conventional and intelligence models. |
doi_str_mv | 10.17775/CSEEJPES.2020.04010 |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a</doaj_id><sourcerecordid>oai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a</sourcerecordid><originalsourceid>FETCH-LOGICAL-d221t-729f00f2d6a6e18e0ccfa6d50ab60f161613c804053f1ed6fa71a7384146ffa83</originalsourceid><addsrcrecordid>eNotUF1LwzAUzYOCY-4f-JA_0HmTtkn7KKFzkxUH3Xwtt00yMrpGkors31tUzsP5gHvhHEKeGKyZlDJ_Vk1VvR2qZs2BwxoyYHBHFhxKkQBk_IGsYrwAAC9yySFbkGZ764LTtPbaDNRbevDfJtBjwDFaH66z3uDXMFE1YIzOuh4n50d6im48U5VEM1Ec5_uNqmlCa9V81I_k3uIQzeqfl-S0qY5qm-zfX3fqZZ9oztmUSF5aAMu1QGFYYaDvLQqdA3YCLBMz0r6YO-SpZUYLi5KhTIuMZcJaLNIl2f391R4v7WdwVwy31qNrfwMfzi2GyfWDaYH3piihLMreZrPppJbItDZc6HkOTH8AaZNdEw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM</title><source>IEEE Xplore All Journals</source><source>Publicly Available Content Database</source><creator>Ali Abdo ; Hongshun Liu ; Yousif Mahmoud ; Hongru Zhang ; Ying Sun ; Qingquan Li ; Jian Guo</creator><creatorcontrib>Ali Abdo ; Hongshun Liu ; Yousif Mahmoud ; Hongru Zhang ; Ying Sun ; Qingquan Li ; Jian Guo</creatorcontrib><description>This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) & modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovation in this paper is shown in terms of solving the predicaments of outliers, boundary proportion, and unequal data existing in both traditional and intelligence models. Taking into consideration the closeness of dissolved gas analysis (DGA) data, the C-set method is implemented to subset the DGA data samples based on their type of faults within unrepeated subsets. Then, the MFCM is used for removing outliers from DGA samples by combining highly similar data for every subset within the same cluster to obtain the optimized training data (OTD) set. It is also used to minimize dimensionality of DGA samples and the uncertainty of transformer condition monitoring. After that, the optimized MCSVM is trained by using the (OTD). The proposed model diagnosis accuracy is 93.3%. The obtained results indicate that our model significantly improves the fault identification accuracy in power transformers when compared with other conventional and intelligence models.</description><identifier>ISSN: 2096-0042</identifier><identifier>DOI: 10.17775/CSEEJPES.2020.04010</identifier><language>eng</language><publisher>China electric power research institute</publisher><subject>Combination subset of set (C-set) method ; modified fuzzy C-means (MFCM) ; optimizable multiclass-SVM (MCSVM) ; optimized training data (OTD)</subject><ispartof>CSEE Journal of Power and Energy Systems, 2024-03, Vol.10 (2), p.672-685</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2103-2020</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ali Abdo</creatorcontrib><creatorcontrib>Hongshun Liu</creatorcontrib><creatorcontrib>Yousif Mahmoud</creatorcontrib><creatorcontrib>Hongru Zhang</creatorcontrib><creatorcontrib>Ying Sun</creatorcontrib><creatorcontrib>Qingquan Li</creatorcontrib><creatorcontrib>Jian Guo</creatorcontrib><title>Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM</title><title>CSEE Journal of Power and Energy Systems</title><description>This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) & modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovation in this paper is shown in terms of solving the predicaments of outliers, boundary proportion, and unequal data existing in both traditional and intelligence models. Taking into consideration the closeness of dissolved gas analysis (DGA) data, the C-set method is implemented to subset the DGA data samples based on their type of faults within unrepeated subsets. Then, the MFCM is used for removing outliers from DGA samples by combining highly similar data for every subset within the same cluster to obtain the optimized training data (OTD) set. It is also used to minimize dimensionality of DGA samples and the uncertainty of transformer condition monitoring. After that, the optimized MCSVM is trained by using the (OTD). The proposed model diagnosis accuracy is 93.3%. The obtained results indicate that our model significantly improves the fault identification accuracy in power transformers when compared with other conventional and intelligence models.</description><subject>Combination subset of set (C-set) method</subject><subject>modified fuzzy C-means (MFCM)</subject><subject>optimizable multiclass-SVM (MCSVM)</subject><subject>optimized training data (OTD)</subject><issn>2096-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNotUF1LwzAUzYOCY-4f-JA_0HmTtkn7KKFzkxUH3Xwtt00yMrpGkors31tUzsP5gHvhHEKeGKyZlDJ_Vk1VvR2qZs2BwxoyYHBHFhxKkQBk_IGsYrwAAC9yySFbkGZ764LTtPbaDNRbevDfJtBjwDFaH66z3uDXMFE1YIzOuh4n50d6im48U5VEM1Ec5_uNqmlCa9V81I_k3uIQzeqfl-S0qY5qm-zfX3fqZZ9oztmUSF5aAMu1QGFYYaDvLQqdA3YCLBMz0r6YO-SpZUYLi5KhTIuMZcJaLNIl2f391R4v7WdwVwy31qNrfwMfzi2GyfWDaYH3piihLMreZrPppJbItDZc6HkOTH8AaZNdEw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Ali Abdo</creator><creator>Hongshun Liu</creator><creator>Yousif Mahmoud</creator><creator>Hongru Zhang</creator><creator>Ying Sun</creator><creator>Qingquan Li</creator><creator>Jian Guo</creator><general>China electric power research institute</general><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2103-2020</orcidid></search><sort><creationdate>20240301</creationdate><title>Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM</title><author>Ali Abdo ; Hongshun Liu ; Yousif Mahmoud ; Hongru Zhang ; Ying Sun ; Qingquan Li ; Jian Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d221t-729f00f2d6a6e18e0ccfa6d50ab60f161613c804053f1ed6fa71a7384146ffa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combination subset of set (C-set) method</topic><topic>modified fuzzy C-means (MFCM)</topic><topic>optimizable multiclass-SVM (MCSVM)</topic><topic>optimized training data (OTD)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali Abdo</creatorcontrib><creatorcontrib>Hongshun Liu</creatorcontrib><creatorcontrib>Yousif Mahmoud</creatorcontrib><creatorcontrib>Hongru Zhang</creatorcontrib><creatorcontrib>Ying Sun</creatorcontrib><creatorcontrib>Qingquan Li</creatorcontrib><creatorcontrib>Jian Guo</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>CSEE Journal of Power and Energy Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali Abdo</au><au>Hongshun Liu</au><au>Yousif Mahmoud</au><au>Hongru Zhang</au><au>Ying Sun</au><au>Qingquan Li</au><au>Jian Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM</atitle><jtitle>CSEE Journal of Power and Energy Systems</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>10</volume><issue>2</issue><spage>672</spage><epage>685</epage><pages>672-685</pages><issn>2096-0042</issn><abstract>This paper aims to increase the diagnosis accuracy of the fault classification of power transformers by introducing a new off-line hybrid model based on a combination subset of the et method (C-set) & modified fuzzy C-mean algorithm (MFCM) and the optimizable multiclass-SVM (MCSVM). The innovation in this paper is shown in terms of solving the predicaments of outliers, boundary proportion, and unequal data existing in both traditional and intelligence models. Taking into consideration the closeness of dissolved gas analysis (DGA) data, the C-set method is implemented to subset the DGA data samples based on their type of faults within unrepeated subsets. Then, the MFCM is used for removing outliers from DGA samples by combining highly similar data for every subset within the same cluster to obtain the optimized training data (OTD) set. It is also used to minimize dimensionality of DGA samples and the uncertainty of transformer condition monitoring. After that, the optimized MCSVM is trained by using the (OTD). The proposed model diagnosis accuracy is 93.3%. The obtained results indicate that our model significantly improves the fault identification accuracy in power transformers when compared with other conventional and intelligence models.</abstract><pub>China electric power research institute</pub><doi>10.17775/CSEEJPES.2020.04010</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2103-2020</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2096-0042 |
ispartof | CSEE Journal of Power and Energy Systems, 2024-03, Vol.10 (2), p.672-685 |
issn | 2096-0042 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a |
source | IEEE Xplore All Journals; Publicly Available Content Database |
subjects | Combination subset of set (C-set) method modified fuzzy C-means (MFCM) optimizable multiclass-SVM (MCSVM) optimized training data (OTD) |
title | Hybrid Model of Power Transformer Fault Classification Using C-set and MFCM - MCSVM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A39%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Model%20of%20Power%20Transformer%20Fault%20Classification%20Using%20C-set%20and%20MFCM%20-%20MCSVM&rft.jtitle=CSEE%20Journal%20of%20Power%20and%20Energy%20Systems&rft.au=Ali%20Abdo&rft.date=2024-03-01&rft.volume=10&rft.issue=2&rft.spage=672&rft.epage=685&rft.pages=672-685&rft.issn=2096-0042&rft_id=info:doi/10.17775/CSEEJPES.2020.04010&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_02ce890989cf402cb7d7a1dde26d000a%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-d221t-729f00f2d6a6e18e0ccfa6d50ab60f161613c804053f1ed6fa71a7384146ffa83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |