Loading…

Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes

Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation,...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2022-07, Vol.23 (14), p.7965
Main Authors: Bolneo, Erika, Chau, Pak Yan S., Noakes, Peter G., Bellingham, Mark C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-7ccfceebfae14a36710fd05ae3d46e01a763c7935d4b22185ce7dbb56ea319ec3
cites cdi_FETCH-LOGICAL-c455t-7ccfceebfae14a36710fd05ae3d46e01a763c7935d4b22185ce7dbb56ea319ec3
container_end_page
container_issue 14
container_start_page 7965
container_title International journal of molecular sciences
container_volume 23
creator Bolneo, Erika
Chau, Pak Yan S.
Noakes, Peter G.
Bellingham, Mark C.
description Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.
doi_str_mv 10.3390/ijms23147965
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02dbf85f2e894f94b4a67599f87fe5e7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02dbf85f2e894f94b4a67599f87fe5e7</doaj_id><sourcerecordid>2695294946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-7ccfceebfae14a36710fd05ae3d46e01a763c7935d4b22185ce7dbb56ea319ec3</originalsourceid><addsrcrecordid>eNpdkktv1DAURiMEoqWw4wdYYsOCAb8db5BCB8JIA0ioZWs5znXqIYmndjIS_55Mp0ItKz_u8ZHvp1sUrwl-z5jGH8JuyJQRrrQUT4pzwildYSzV0wf7s-JFzjuMKaNCPy_OmChLxbA6L7rNeIA8hc5OYezQdAPoZ-wBRY_q6lOFwoi-w5xsj9ZwgD7uBxgnZMcWrUMGmwFd5-PDb8EB2lr3-3ioq7VUKCb0q66uUA0j5JfFM2_7DK_u14vi-svnq8uvq-2PenNZbVeOCzGtlHPeATTeAuGWSUWwb7GwwFouAROrJHNKM9HyhlJSCgeqbRohwTKiwbGLYnPyttHuzD6FwaY_Jtpg7i5i6oxNU3A9GEzbxpfCUyg195o33EoltPal8iBALa6PJ9d-bgZo3dL5EsQj6ePKGG5MFw9GM1IqwRbB23tBirfzErMZQnbQ93aEOGdDpRZUc83lgr75D93FOY1LVEeKYyLEHfXuRLkUc07g_32GYHOcBvNwGthfboSlrw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694015546</pqid></control><display><type>article</type><title>Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Bolneo, Erika ; Chau, Pak Yan S. ; Noakes, Peter G. ; Bellingham, Mark C.</creator><creatorcontrib>Bolneo, Erika ; Chau, Pak Yan S. ; Noakes, Peter G. ; Bellingham, Mark C.</creatorcontrib><description>Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms23147965</identifier><identifier>PMID: 35887307</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Autism ; Binding sites ; Brain ; Cell cycle ; Central nervous system ; Chloride channels ; Epilepsy ; Forebrain ; GABA ; GABA-receptors ; GABAergic transmission ; GAD65 ; GAD67 ; Mental disorders ; Nervous system ; Neurogenesis ; Neurological diseases ; Neurons ; Neurotransmission ; Neurotransmitters ; Review ; Schizophrenia ; Signal transduction ; Spinal cord ; Synapses ; VGAT ; γ-Aminobutyric acid ; γ-Aminobutyric acid receptors</subject><ispartof>International journal of molecular sciences, 2022-07, Vol.23 (14), p.7965</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-7ccfceebfae14a36710fd05ae3d46e01a763c7935d4b22185ce7dbb56ea319ec3</citedby><cites>FETCH-LOGICAL-c455t-7ccfceebfae14a36710fd05ae3d46e01a763c7935d4b22185ce7dbb56ea319ec3</cites><orcidid>0000-0002-7548-0905 ; 0000-0001-9821-8478 ; 0000-0001-9189-4430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2694015546/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2694015546?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Bolneo, Erika</creatorcontrib><creatorcontrib>Chau, Pak Yan S.</creatorcontrib><creatorcontrib>Noakes, Peter G.</creatorcontrib><creatorcontrib>Bellingham, Mark C.</creatorcontrib><title>Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes</title><title>International journal of molecular sciences</title><description>Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.</description><subject>Autism</subject><subject>Binding sites</subject><subject>Brain</subject><subject>Cell cycle</subject><subject>Central nervous system</subject><subject>Chloride channels</subject><subject>Epilepsy</subject><subject>Forebrain</subject><subject>GABA</subject><subject>GABA-receptors</subject><subject>GABAergic transmission</subject><subject>GAD65</subject><subject>GAD67</subject><subject>Mental disorders</subject><subject>Nervous system</subject><subject>Neurogenesis</subject><subject>Neurological diseases</subject><subject>Neurons</subject><subject>Neurotransmission</subject><subject>Neurotransmitters</subject><subject>Review</subject><subject>Schizophrenia</subject><subject>Signal transduction</subject><subject>Spinal cord</subject><subject>Synapses</subject><subject>VGAT</subject><subject>γ-Aminobutyric acid</subject><subject>γ-Aminobutyric acid receptors</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktv1DAURiMEoqWw4wdYYsOCAb8db5BCB8JIA0ioZWs5znXqIYmndjIS_55Mp0ItKz_u8ZHvp1sUrwl-z5jGH8JuyJQRrrQUT4pzwildYSzV0wf7s-JFzjuMKaNCPy_OmChLxbA6L7rNeIA8hc5OYezQdAPoZ-wBRY_q6lOFwoi-w5xsj9ZwgD7uBxgnZMcWrUMGmwFd5-PDb8EB2lr3-3ioq7VUKCb0q66uUA0j5JfFM2_7DK_u14vi-svnq8uvq-2PenNZbVeOCzGtlHPeATTeAuGWSUWwb7GwwFouAROrJHNKM9HyhlJSCgeqbRohwTKiwbGLYnPyttHuzD6FwaY_Jtpg7i5i6oxNU3A9GEzbxpfCUyg195o33EoltPal8iBALa6PJ9d-bgZo3dL5EsQj6ePKGG5MFw9GM1IqwRbB23tBirfzErMZQnbQ93aEOGdDpRZUc83lgr75D93FOY1LVEeKYyLEHfXuRLkUc07g_32GYHOcBvNwGthfboSlrw</recordid><startdate>20220719</startdate><enddate>20220719</enddate><creator>Bolneo, Erika</creator><creator>Chau, Pak Yan S.</creator><creator>Noakes, Peter G.</creator><creator>Bellingham, Mark C.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7548-0905</orcidid><orcidid>https://orcid.org/0000-0001-9821-8478</orcidid><orcidid>https://orcid.org/0000-0001-9189-4430</orcidid></search><sort><creationdate>20220719</creationdate><title>Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes</title><author>Bolneo, Erika ; Chau, Pak Yan S. ; Noakes, Peter G. ; Bellingham, Mark C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-7ccfceebfae14a36710fd05ae3d46e01a763c7935d4b22185ce7dbb56ea319ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Autism</topic><topic>Binding sites</topic><topic>Brain</topic><topic>Cell cycle</topic><topic>Central nervous system</topic><topic>Chloride channels</topic><topic>Epilepsy</topic><topic>Forebrain</topic><topic>GABA</topic><topic>GABA-receptors</topic><topic>GABAergic transmission</topic><topic>GAD65</topic><topic>GAD67</topic><topic>Mental disorders</topic><topic>Nervous system</topic><topic>Neurogenesis</topic><topic>Neurological diseases</topic><topic>Neurons</topic><topic>Neurotransmission</topic><topic>Neurotransmitters</topic><topic>Review</topic><topic>Schizophrenia</topic><topic>Signal transduction</topic><topic>Spinal cord</topic><topic>Synapses</topic><topic>VGAT</topic><topic>γ-Aminobutyric acid</topic><topic>γ-Aminobutyric acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolneo, Erika</creatorcontrib><creatorcontrib>Chau, Pak Yan S.</creatorcontrib><creatorcontrib>Noakes, Peter G.</creatorcontrib><creatorcontrib>Bellingham, Mark C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medicine (ProQuest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolneo, Erika</au><au>Chau, Pak Yan S.</au><au>Noakes, Peter G.</au><au>Bellingham, Mark C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes</atitle><jtitle>International journal of molecular sciences</jtitle><date>2022-07-19</date><risdate>2022</risdate><volume>23</volume><issue>14</issue><spage>7965</spage><pages>7965-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Normal development and function of the central nervous system involves a balance between excitatory and inhibitory neurotransmission. Activity of both excitatory and inhibitory neurons is modulated by inhibitory signalling of the GABAergic and glycinergic systems. Mechanisms that regulate formation, maturation, refinement, and maintenance of inhibitory synapses are established in early life. Deviations from ideal excitatory and inhibitory balance, such as down-regulated inhibition, are linked with many neurological diseases, including epilepsy, schizophrenia, anxiety, and autism spectrum disorders. In the mammalian forebrain, GABA is the primary inhibitory neurotransmitter, binding to GABA receptors, opening chloride channels and hyperpolarizing the cell. We review the involvement of down-regulated inhibitory signalling in neurological disorders, possible mechanisms for disease progression, and targets for therapeutic intervention. We conclude that transgenic models of disrupted inhibitory signalling—in GAD67+/− and VGAT−/− mice—are useful for investigating the effects of down-regulated inhibitory signalling in a range of neurological diseases.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35887307</pmid><doi>10.3390/ijms23147965</doi><orcidid>https://orcid.org/0000-0002-7548-0905</orcidid><orcidid>https://orcid.org/0000-0001-9821-8478</orcidid><orcidid>https://orcid.org/0000-0001-9189-4430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2022-07, Vol.23 (14), p.7965
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_02dbf85f2e894f94b4a67599f87fe5e7
source Publicly Available Content Database; PubMed Central
subjects Autism
Binding sites
Brain
Cell cycle
Central nervous system
Chloride channels
Epilepsy
Forebrain
GABA
GABA-receptors
GABAergic transmission
GAD65
GAD67
Mental disorders
Nervous system
Neurogenesis
Neurological diseases
Neurons
Neurotransmission
Neurotransmitters
Review
Schizophrenia
Signal transduction
Spinal cord
Synapses
VGAT
γ-Aminobutyric acid
γ-Aminobutyric acid receptors
title Investigating the Role of GABA in Neural Development and Disease Using Mice Lacking GAD67 or VGAT Genes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A44%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20Role%20of%20GABA%20in%20Neural%20Development%20and%20Disease%20Using%20Mice%20Lacking%20GAD67%20or%20VGAT%20Genes&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Bolneo,%20Erika&rft.date=2022-07-19&rft.volume=23&rft.issue=14&rft.spage=7965&rft.pages=7965-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms23147965&rft_dat=%3Cproquest_doaj_%3E2695294946%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-7ccfceebfae14a36710fd05ae3d46e01a763c7935d4b22185ce7dbb56ea319ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2694015546&rft_id=info:pmid/35887307&rfr_iscdi=true