Loading…

Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis

•Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy. Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticat...

Full description

Saved in:
Bibliographic Details
Published in:Talanta open 2022-08, Vol.5, p.100117, Article 100117
Main Authors: Luccas, Fernanda S., Fernandes, Elisabete A. De Nadai, Mazola, Yuniel T., Bacchi, Márcio A., Sarriés, Gabriel A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513
cites cdi_FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513
container_end_page
container_issue
container_start_page 100117
container_title Talanta open
container_volume 5
creator Luccas, Fernanda S.
Fernandes, Elisabete A. De Nadai
Mazola, Yuniel T.
Bacchi, Márcio A.
Sarriés, Gabriel A.
description •Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy. Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticate entomological, botanical and geographical origins. Sample preparation is a crucial step of the analysis to obtaining reliable data and minimizing interference owing to matrix effects. The present work studied the best sample digestion procedure for elemental analysis of Brazilian honeys from Tetragonisca angustula (Jataí) and Apis mellifera sp (Apis) by triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS). A central composite design with 2² factorial and 3 center points considering different volumes of HNO3 and H2O2 was investigated. There was no statistically significant influence of the amounts of HNO3 and H2O2 on the recoveries of Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, K, La, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Th, U, V and Zn mass fractions. Machine learning algorithms (Multilayer Perceptron, Random Forest and Support Vector Machine) allowed discriminating entomological origin of honeys based on chemical profile with a classification accuracy of 99%. [Display omitted]
doi_str_mv 10.1016/j.talo.2022.100117
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02dede4af5d24979942f89f13b756fe7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666831922000352</els_id><doaj_id>oai_doaj_org_article_02dede4af5d24979942f89f13b756fe7</doaj_id><sourcerecordid>S2666831922000352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWGpfwKt9ga1JdrPZgDda_Cm0VLFeh-lmolm2myVZhPbp3VopXslczMyB8zFzCLlmdMooK27qaQ-Nn3LK-SBQxuQZGfGiKNIyY-r8z3xJJjHWlFIu2LCKEVmuut5t3R5659vE2yTCtmsw6QJ2EE7qfYC9axy0yadvcRcT60Oyfk3ns5d0-ZZAC80uunhFLiw0ESe_fUzeHx_Ws-d0sXqaz-4WaZUz2qeghpJWWGbKDQpOs5wbRgspbMYYyhytlVRJwTcmM7YQFTelMhR4nslsOH1M5keu8VDrLrgthJ324PSP4MOHhtC7qkFNuUGDOVhheK6kUjm3pbIs20hRWJQDix9ZVfAxBrQnHqP6kK-u9SFffchXH_MdTLdHEw5ffjkMOlYO2wqNC1j1wxnuP_s3rfSCjg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis</title><source>ScienceDirect Journals</source><creator>Luccas, Fernanda S. ; Fernandes, Elisabete A. De Nadai ; Mazola, Yuniel T. ; Bacchi, Márcio A. ; Sarriés, Gabriel A.</creator><creatorcontrib>Luccas, Fernanda S. ; Fernandes, Elisabete A. De Nadai ; Mazola, Yuniel T. ; Bacchi, Márcio A. ; Sarriés, Gabriel A.</creatorcontrib><description>•Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy. Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticate entomological, botanical and geographical origins. Sample preparation is a crucial step of the analysis to obtaining reliable data and minimizing interference owing to matrix effects. The present work studied the best sample digestion procedure for elemental analysis of Brazilian honeys from Tetragonisca angustula (Jataí) and Apis mellifera sp (Apis) by triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS). A central composite design with 2² factorial and 3 center points considering different volumes of HNO3 and H2O2 was investigated. There was no statistically significant influence of the amounts of HNO3 and H2O2 on the recoveries of Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, K, La, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Th, U, V and Zn mass fractions. Machine learning algorithms (Multilayer Perceptron, Random Forest and Support Vector Machine) allowed discriminating entomological origin of honeys based on chemical profile with a classification accuracy of 99%. [Display omitted]</description><identifier>ISSN: 2666-8319</identifier><identifier>EISSN: 2666-8319</identifier><identifier>DOI: 10.1016/j.talo.2022.100117</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Apis mellifera sp ; Chemometrics ; Honey ; Stingless bee ; Tetragonisca angustula (Jataí)</subject><ispartof>Talanta open, 2022-08, Vol.5, p.100117, Article 100117</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513</citedby><cites>FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666831922000352$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Luccas, Fernanda S.</creatorcontrib><creatorcontrib>Fernandes, Elisabete A. De Nadai</creatorcontrib><creatorcontrib>Mazola, Yuniel T.</creatorcontrib><creatorcontrib>Bacchi, Márcio A.</creatorcontrib><creatorcontrib>Sarriés, Gabriel A.</creatorcontrib><title>Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis</title><title>Talanta open</title><description>•Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy. Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticate entomological, botanical and geographical origins. Sample preparation is a crucial step of the analysis to obtaining reliable data and minimizing interference owing to matrix effects. The present work studied the best sample digestion procedure for elemental analysis of Brazilian honeys from Tetragonisca angustula (Jataí) and Apis mellifera sp (Apis) by triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS). A central composite design with 2² factorial and 3 center points considering different volumes of HNO3 and H2O2 was investigated. There was no statistically significant influence of the amounts of HNO3 and H2O2 on the recoveries of Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, K, La, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Th, U, V and Zn mass fractions. Machine learning algorithms (Multilayer Perceptron, Random Forest and Support Vector Machine) allowed discriminating entomological origin of honeys based on chemical profile with a classification accuracy of 99%. [Display omitted]</description><subject>Apis mellifera sp</subject><subject>Chemometrics</subject><subject>Honey</subject><subject>Stingless bee</subject><subject>Tetragonisca angustula (Jataí)</subject><issn>2666-8319</issn><issn>2666-8319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kN1KAzEQhYMoWGpfwKt9ga1JdrPZgDda_Cm0VLFeh-lmolm2myVZhPbp3VopXslczMyB8zFzCLlmdMooK27qaQ-Nn3LK-SBQxuQZGfGiKNIyY-r8z3xJJjHWlFIu2LCKEVmuut5t3R5659vE2yTCtmsw6QJ2EE7qfYC9axy0yadvcRcT60Oyfk3ns5d0-ZZAC80uunhFLiw0ESe_fUzeHx_Ws-d0sXqaz-4WaZUz2qeghpJWWGbKDQpOs5wbRgspbMYYyhytlVRJwTcmM7YQFTelMhR4nslsOH1M5keu8VDrLrgthJ324PSP4MOHhtC7qkFNuUGDOVhheK6kUjm3pbIs20hRWJQDix9ZVfAxBrQnHqP6kK-u9SFffchXH_MdTLdHEw5ffjkMOlYO2wqNC1j1wxnuP_s3rfSCjg</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Luccas, Fernanda S.</creator><creator>Fernandes, Elisabete A. De Nadai</creator><creator>Mazola, Yuniel T.</creator><creator>Bacchi, Márcio A.</creator><creator>Sarriés, Gabriel A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202208</creationdate><title>Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis</title><author>Luccas, Fernanda S. ; Fernandes, Elisabete A. De Nadai ; Mazola, Yuniel T. ; Bacchi, Márcio A. ; Sarriés, Gabriel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apis mellifera sp</topic><topic>Chemometrics</topic><topic>Honey</topic><topic>Stingless bee</topic><topic>Tetragonisca angustula (Jataí)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luccas, Fernanda S.</creatorcontrib><creatorcontrib>Fernandes, Elisabete A. De Nadai</creatorcontrib><creatorcontrib>Mazola, Yuniel T.</creatorcontrib><creatorcontrib>Bacchi, Márcio A.</creatorcontrib><creatorcontrib>Sarriés, Gabriel A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Talanta open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luccas, Fernanda S.</au><au>Fernandes, Elisabete A. De Nadai</au><au>Mazola, Yuniel T.</au><au>Bacchi, Márcio A.</au><au>Sarriés, Gabriel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis</atitle><jtitle>Talanta open</jtitle><date>2022-08</date><risdate>2022</risdate><volume>5</volume><spage>100117</spage><pages>100117-</pages><artnum>100117</artnum><issn>2666-8319</issn><eissn>2666-8319</eissn><abstract>•Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy. Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticate entomological, botanical and geographical origins. Sample preparation is a crucial step of the analysis to obtaining reliable data and minimizing interference owing to matrix effects. The present work studied the best sample digestion procedure for elemental analysis of Brazilian honeys from Tetragonisca angustula (Jataí) and Apis mellifera sp (Apis) by triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS). A central composite design with 2² factorial and 3 center points considering different volumes of HNO3 and H2O2 was investigated. There was no statistically significant influence of the amounts of HNO3 and H2O2 on the recoveries of Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, K, La, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Th, U, V and Zn mass fractions. Machine learning algorithms (Multilayer Perceptron, Random Forest and Support Vector Machine) allowed discriminating entomological origin of honeys based on chemical profile with a classification accuracy of 99%. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.talo.2022.100117</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-8319
ispartof Talanta open, 2022-08, Vol.5, p.100117, Article 100117
issn 2666-8319
2666-8319
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_02dede4af5d24979942f89f13b756fe7
source ScienceDirect Journals
subjects Apis mellifera sp
Chemometrics
Honey
Stingless bee
Tetragonisca angustula (Jataí)
title Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20sample%20preparation%20of%20Brazilian%20honeys%20for%20TQ-ICP-MS%20analysis&rft.jtitle=Talanta%20open&rft.au=Luccas,%20Fernanda%20S.&rft.date=2022-08&rft.volume=5&rft.spage=100117&rft.pages=100117-&rft.artnum=100117&rft.issn=2666-8319&rft.eissn=2666-8319&rft_id=info:doi/10.1016/j.talo.2022.100117&rft_dat=%3Celsevier_doaj_%3ES2666831922000352%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true