Loading…
Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis
•Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy. Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticat...
Saved in:
Published in: | Talanta open 2022-08, Vol.5, p.100117, Article 100117 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513 |
---|---|
cites | cdi_FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513 |
container_end_page | |
container_issue | |
container_start_page | 100117 |
container_title | Talanta open |
container_volume | 5 |
creator | Luccas, Fernanda S. Fernandes, Elisabete A. De Nadai Mazola, Yuniel T. Bacchi, Márcio A. Sarriés, Gabriel A. |
description | •Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy.
Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticate entomological, botanical and geographical origins. Sample preparation is a crucial step of the analysis to obtaining reliable data and minimizing interference owing to matrix effects. The present work studied the best sample digestion procedure for elemental analysis of Brazilian honeys from Tetragonisca angustula (Jataí) and Apis mellifera sp (Apis) by triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS). A central composite design with 2² factorial and 3 center points considering different volumes of HNO3 and H2O2 was investigated. There was no statistically significant influence of the amounts of HNO3 and H2O2 on the recoveries of Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, K, La, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Th, U, V and Zn mass fractions. Machine learning algorithms (Multilayer Perceptron, Random Forest and Support Vector Machine) allowed discriminating entomological origin of honeys based on chemical profile with a classification accuracy of 99%.
[Display omitted] |
doi_str_mv | 10.1016/j.talo.2022.100117 |
format | article |
fullrecord | <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02dede4af5d24979942f89f13b756fe7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666831922000352</els_id><doaj_id>oai_doaj_org_article_02dede4af5d24979942f89f13b756fe7</doaj_id><sourcerecordid>S2666831922000352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWGpfwKt9ga1JdrPZgDda_Cm0VLFeh-lmolm2myVZhPbp3VopXslczMyB8zFzCLlmdMooK27qaQ-Nn3LK-SBQxuQZGfGiKNIyY-r8z3xJJjHWlFIu2LCKEVmuut5t3R5659vE2yTCtmsw6QJ2EE7qfYC9axy0yadvcRcT60Oyfk3ns5d0-ZZAC80uunhFLiw0ESe_fUzeHx_Ws-d0sXqaz-4WaZUz2qeghpJWWGbKDQpOs5wbRgspbMYYyhytlVRJwTcmM7YQFTelMhR4nslsOH1M5keu8VDrLrgthJ324PSP4MOHhtC7qkFNuUGDOVhheK6kUjm3pbIs20hRWJQDix9ZVfAxBrQnHqP6kK-u9SFffchXH_MdTLdHEw5ffjkMOlYO2wqNC1j1wxnuP_s3rfSCjg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis</title><source>ScienceDirect Journals</source><creator>Luccas, Fernanda S. ; Fernandes, Elisabete A. De Nadai ; Mazola, Yuniel T. ; Bacchi, Márcio A. ; Sarriés, Gabriel A.</creator><creatorcontrib>Luccas, Fernanda S. ; Fernandes, Elisabete A. De Nadai ; Mazola, Yuniel T. ; Bacchi, Márcio A. ; Sarriés, Gabriel A.</creatorcontrib><description>•Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy.
Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticate entomological, botanical and geographical origins. Sample preparation is a crucial step of the analysis to obtaining reliable data and minimizing interference owing to matrix effects. The present work studied the best sample digestion procedure for elemental analysis of Brazilian honeys from Tetragonisca angustula (Jataí) and Apis mellifera sp (Apis) by triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS). A central composite design with 2² factorial and 3 center points considering different volumes of HNO3 and H2O2 was investigated. There was no statistically significant influence of the amounts of HNO3 and H2O2 on the recoveries of Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, K, La, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Th, U, V and Zn mass fractions. Machine learning algorithms (Multilayer Perceptron, Random Forest and Support Vector Machine) allowed discriminating entomological origin of honeys based on chemical profile with a classification accuracy of 99%.
[Display omitted]</description><identifier>ISSN: 2666-8319</identifier><identifier>EISSN: 2666-8319</identifier><identifier>DOI: 10.1016/j.talo.2022.100117</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Apis mellifera sp ; Chemometrics ; Honey ; Stingless bee ; Tetragonisca angustula (Jataí)</subject><ispartof>Talanta open, 2022-08, Vol.5, p.100117, Article 100117</ispartof><rights>2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513</citedby><cites>FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666831922000352$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27901,27902,45756</link.rule.ids></links><search><creatorcontrib>Luccas, Fernanda S.</creatorcontrib><creatorcontrib>Fernandes, Elisabete A. De Nadai</creatorcontrib><creatorcontrib>Mazola, Yuniel T.</creatorcontrib><creatorcontrib>Bacchi, Márcio A.</creatorcontrib><creatorcontrib>Sarriés, Gabriel A.</creatorcontrib><title>Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis</title><title>Talanta open</title><description>•Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy.
Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticate entomological, botanical and geographical origins. Sample preparation is a crucial step of the analysis to obtaining reliable data and minimizing interference owing to matrix effects. The present work studied the best sample digestion procedure for elemental analysis of Brazilian honeys from Tetragonisca angustula (Jataí) and Apis mellifera sp (Apis) by triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS). A central composite design with 2² factorial and 3 center points considering different volumes of HNO3 and H2O2 was investigated. There was no statistically significant influence of the amounts of HNO3 and H2O2 on the recoveries of Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, K, La, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Th, U, V and Zn mass fractions. Machine learning algorithms (Multilayer Perceptron, Random Forest and Support Vector Machine) allowed discriminating entomological origin of honeys based on chemical profile with a classification accuracy of 99%.
[Display omitted]</description><subject>Apis mellifera sp</subject><subject>Chemometrics</subject><subject>Honey</subject><subject>Stingless bee</subject><subject>Tetragonisca angustula (Jataí)</subject><issn>2666-8319</issn><issn>2666-8319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kN1KAzEQhYMoWGpfwKt9ga1JdrPZgDda_Cm0VLFeh-lmolm2myVZhPbp3VopXslczMyB8zFzCLlmdMooK27qaQ-Nn3LK-SBQxuQZGfGiKNIyY-r8z3xJJjHWlFIu2LCKEVmuut5t3R5659vE2yTCtmsw6QJ2EE7qfYC9axy0yadvcRcT60Oyfk3ns5d0-ZZAC80uunhFLiw0ESe_fUzeHx_Ws-d0sXqaz-4WaZUz2qeghpJWWGbKDQpOs5wbRgspbMYYyhytlVRJwTcmM7YQFTelMhR4nslsOH1M5keu8VDrLrgthJ324PSP4MOHhtC7qkFNuUGDOVhheK6kUjm3pbIs20hRWJQDix9ZVfAxBrQnHqP6kK-u9SFffchXH_MdTLdHEw5ffjkMOlYO2wqNC1j1wxnuP_s3rfSCjg</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Luccas, Fernanda S.</creator><creator>Fernandes, Elisabete A. De Nadai</creator><creator>Mazola, Yuniel T.</creator><creator>Bacchi, Márcio A.</creator><creator>Sarriés, Gabriel A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>202208</creationdate><title>Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis</title><author>Luccas, Fernanda S. ; Fernandes, Elisabete A. De Nadai ; Mazola, Yuniel T. ; Bacchi, Márcio A. ; Sarriés, Gabriel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Apis mellifera sp</topic><topic>Chemometrics</topic><topic>Honey</topic><topic>Stingless bee</topic><topic>Tetragonisca angustula (Jataí)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luccas, Fernanda S.</creatorcontrib><creatorcontrib>Fernandes, Elisabete A. De Nadai</creatorcontrib><creatorcontrib>Mazola, Yuniel T.</creatorcontrib><creatorcontrib>Bacchi, Márcio A.</creatorcontrib><creatorcontrib>Sarriés, Gabriel A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Talanta open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luccas, Fernanda S.</au><au>Fernandes, Elisabete A. De Nadai</au><au>Mazola, Yuniel T.</au><au>Bacchi, Márcio A.</au><au>Sarriés, Gabriel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis</atitle><jtitle>Talanta open</jtitle><date>2022-08</date><risdate>2022</risdate><volume>5</volume><spage>100117</spage><pages>100117-</pages><artnum>100117</artnum><issn>2666-8319</issn><eissn>2666-8319</eissn><abstract>•Optimization of honey microwave-assisted digestion.•TQ-ICP-MS and NAA assessed chemical profile of Brazilian honeys.•ML algorithms discriminated honeys by entomological origin with 99% accuracy.
Mass spectrometry-based techniques have been used to study the chemical profile of honeys to authenticate entomological, botanical and geographical origins. Sample preparation is a crucial step of the analysis to obtaining reliable data and minimizing interference owing to matrix effects. The present work studied the best sample digestion procedure for elemental analysis of Brazilian honeys from Tetragonisca angustula (Jataí) and Apis mellifera sp (Apis) by triple quadrupole inductively coupled plasma mass spectrometry (TQ-ICP-MS). A central composite design with 2² factorial and 3 center points considering different volumes of HNO3 and H2O2 was investigated. There was no statistically significant influence of the amounts of HNO3 and H2O2 on the recoveries of Ag, Al, As, Ba, Be, Ca, Cd, Ce, Co, Cr, Cs, Cu, K, La, Mg, Mn, Na, Ni, Pb, Rb, Se, Sr, Th, U, V and Zn mass fractions. Machine learning algorithms (Multilayer Perceptron, Random Forest and Support Vector Machine) allowed discriminating entomological origin of honeys based on chemical profile with a classification accuracy of 99%.
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.talo.2022.100117</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-8319 |
ispartof | Talanta open, 2022-08, Vol.5, p.100117, Article 100117 |
issn | 2666-8319 2666-8319 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_02dede4af5d24979942f89f13b756fe7 |
source | ScienceDirect Journals |
subjects | Apis mellifera sp Chemometrics Honey Stingless bee Tetragonisca angustula (Jataí) |
title | Optimization of sample preparation of Brazilian honeys for TQ-ICP-MS analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A53%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20sample%20preparation%20of%20Brazilian%20honeys%20for%20TQ-ICP-MS%20analysis&rft.jtitle=Talanta%20open&rft.au=Luccas,%20Fernanda%20S.&rft.date=2022-08&rft.volume=5&rft.spage=100117&rft.pages=100117-&rft.artnum=100117&rft.issn=2666-8319&rft.eissn=2666-8319&rft_id=info:doi/10.1016/j.talo.2022.100117&rft_dat=%3Celsevier_doaj_%3ES2666831922000352%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c410t-a9a9a7f5f1d8be520342d10675f311e74eff709752bd3df65c2d89d0a24373513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |