Loading…

Recent Developments in Flexible Thermoelectric Devices

Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. V...

Full description

Saved in:
Bibliographic Details
Published in:Small science 2021-07, Vol.1 (7), p.n/a
Main Authors: Yang, Shiqi, Qiu, Pengfei, Chen, Lidong, Shi, Xun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33
cites cdi_FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33
container_end_page n/a
container_issue 7
container_start_page
container_title Small science
container_volume 1
creator Yang, Shiqi
Qiu, Pengfei
Chen, Lidong
Shi, Xun
description Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. Various kinds of flexible thermoelectric materials have been developed and some of them have been fabricated into flexible thermoelectric devices, showing the ability to generate nW‐level or even μW‐level electricity. Herein, the basic design principles and typical configurations of flexible thermoelectric devices, as well as the requirements on thermoelectric materials to achieve high performance flexible thermoelectric devices, are first introduced. Then, the recent progress achieved in flexible thermoelectric devices based on organics materials, traditional inorganic materials, other organic/inorganic composites/hybrids, and plastic deformable inorganic semiconductors, respectively, are summarized. Finally, an outlook on the future development of flexible thermoelectrics is briefly given. This study sheds light on the further development of flexible thermoelectrics. This review systematically summarizes 1) the basic design principles and typical configurations of flexible thermoelectric devices, 2) the requirements on thermoelectric materials to achieve flexible thermoelectrics, and 3) the recent progress in flexible thermoelectric devices based on different kinds of thermoelectric materials. Finally, this review briefly gives an outlook on the future development of flexible thermoelectrics.
doi_str_mv 10.1002/smsc.202100005
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02ea17bceb5342bdb4c59ec900fa450f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02ea17bceb5342bdb4c59ec900fa450f</doaj_id><sourcerecordid>2553162486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33</originalsourceid><addsrcrecordid>eNqFkMFPwyAUxonRxGXu6rmJ506gQOFoptMlMyZunkmhr8rSrhM6df-91Br15um9R37fx5cPoXOCpwRjehmaYKcU03hgzI_QiAopU4aZOP6zn6JJCJtIUE5IrugIiUewsO2Sa3iDut01cQ-J2ybzGj6cqSFZv4BvWqjBdt7ZnnMWwhk6qYo6wOR7jtHT_GY9u0uXD7eL2dUytUwqnpZcqJwySSwnFZUswyrPLRaKQymEsbJihBjOoWCSq1JaY4DgiMs-XZVlY7QYfMu22Oidd03hD7otnP56aP2zLnznbA0aUyhIbiwYnjFqSsMsV2AVxlXBOK6i18XgtfPt6x5Cpzft3m9jfE05z4iIQUWkpgNlfRuCh-rnV4J1X7Xuq9Y_VUeBGgTvrobDP7Re3a9mv9pPveyAcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553162486</pqid></control><display><type>article</type><title>Recent Developments in Flexible Thermoelectric Devices</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yang, Shiqi ; Qiu, Pengfei ; Chen, Lidong ; Shi, Xun</creator><creatorcontrib>Yang, Shiqi ; Qiu, Pengfei ; Chen, Lidong ; Shi, Xun</creatorcontrib><description>Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. Various kinds of flexible thermoelectric materials have been developed and some of them have been fabricated into flexible thermoelectric devices, showing the ability to generate nW‐level or even μW‐level electricity. Herein, the basic design principles and typical configurations of flexible thermoelectric devices, as well as the requirements on thermoelectric materials to achieve high performance flexible thermoelectric devices, are first introduced. Then, the recent progress achieved in flexible thermoelectric devices based on organics materials, traditional inorganic materials, other organic/inorganic composites/hybrids, and plastic deformable inorganic semiconductors, respectively, are summarized. Finally, an outlook on the future development of flexible thermoelectrics is briefly given. This study sheds light on the further development of flexible thermoelectrics. This review systematically summarizes 1) the basic design principles and typical configurations of flexible thermoelectric devices, 2) the requirements on thermoelectric materials to achieve flexible thermoelectrics, and 3) the recent progress in flexible thermoelectric devices based on different kinds of thermoelectric materials. Finally, this review briefly gives an outlook on the future development of flexible thermoelectrics.</description><identifier>ISSN: 2688-4046</identifier><identifier>EISSN: 2688-4046</identifier><identifier>DOI: 10.1002/smsc.202100005</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Cooling ; Emission standards ; Flexibility ; flexible thermoelectric ; Geometry ; Heat conductivity ; power density ; self-powered technology ; Semiconductors ; wearables</subject><ispartof>Small science, 2021-07, Vol.1 (7), p.n/a</ispartof><rights>2021 The Authors. Small Science published by Wiley‐VCH GmbH</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33</citedby><cites>FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33</cites><orcidid>0000-0002-8086-6407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2553162486/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2553162486?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11541,25731,27901,27902,36989,44566,46027,46451,74869</link.rule.ids></links><search><creatorcontrib>Yang, Shiqi</creatorcontrib><creatorcontrib>Qiu, Pengfei</creatorcontrib><creatorcontrib>Chen, Lidong</creatorcontrib><creatorcontrib>Shi, Xun</creatorcontrib><title>Recent Developments in Flexible Thermoelectric Devices</title><title>Small science</title><description>Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. Various kinds of flexible thermoelectric materials have been developed and some of them have been fabricated into flexible thermoelectric devices, showing the ability to generate nW‐level or even μW‐level electricity. Herein, the basic design principles and typical configurations of flexible thermoelectric devices, as well as the requirements on thermoelectric materials to achieve high performance flexible thermoelectric devices, are first introduced. Then, the recent progress achieved in flexible thermoelectric devices based on organics materials, traditional inorganic materials, other organic/inorganic composites/hybrids, and plastic deformable inorganic semiconductors, respectively, are summarized. Finally, an outlook on the future development of flexible thermoelectrics is briefly given. This study sheds light on the further development of flexible thermoelectrics. This review systematically summarizes 1) the basic design principles and typical configurations of flexible thermoelectric devices, 2) the requirements on thermoelectric materials to achieve flexible thermoelectrics, and 3) the recent progress in flexible thermoelectric devices based on different kinds of thermoelectric materials. Finally, this review briefly gives an outlook on the future development of flexible thermoelectrics.</description><subject>Cooling</subject><subject>Emission standards</subject><subject>Flexibility</subject><subject>flexible thermoelectric</subject><subject>Geometry</subject><subject>Heat conductivity</subject><subject>power density</subject><subject>self-powered technology</subject><subject>Semiconductors</subject><subject>wearables</subject><issn>2688-4046</issn><issn>2688-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkMFPwyAUxonRxGXu6rmJ506gQOFoptMlMyZunkmhr8rSrhM6df-91Br15um9R37fx5cPoXOCpwRjehmaYKcU03hgzI_QiAopU4aZOP6zn6JJCJtIUE5IrugIiUewsO2Sa3iDut01cQ-J2ybzGj6cqSFZv4BvWqjBdt7ZnnMWwhk6qYo6wOR7jtHT_GY9u0uXD7eL2dUytUwqnpZcqJwySSwnFZUswyrPLRaKQymEsbJihBjOoWCSq1JaY4DgiMs-XZVlY7QYfMu22Oidd03hD7otnP56aP2zLnznbA0aUyhIbiwYnjFqSsMsV2AVxlXBOK6i18XgtfPt6x5Cpzft3m9jfE05z4iIQUWkpgNlfRuCh-rnV4J1X7Xuq9Y_VUeBGgTvrobDP7Re3a9mv9pPveyAcA</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Yang, Shiqi</creator><creator>Qiu, Pengfei</creator><creator>Chen, Lidong</creator><creator>Shi, Xun</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8086-6407</orcidid></search><sort><creationdate>202107</creationdate><title>Recent Developments in Flexible Thermoelectric Devices</title><author>Yang, Shiqi ; Qiu, Pengfei ; Chen, Lidong ; Shi, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cooling</topic><topic>Emission standards</topic><topic>Flexibility</topic><topic>flexible thermoelectric</topic><topic>Geometry</topic><topic>Heat conductivity</topic><topic>power density</topic><topic>self-powered technology</topic><topic>Semiconductors</topic><topic>wearables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shiqi</creatorcontrib><creatorcontrib>Qiu, Pengfei</creatorcontrib><creatorcontrib>Chen, Lidong</creatorcontrib><creatorcontrib>Shi, Xun</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Small science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shiqi</au><au>Qiu, Pengfei</au><au>Chen, Lidong</au><au>Shi, Xun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Developments in Flexible Thermoelectric Devices</atitle><jtitle>Small science</jtitle><date>2021-07</date><risdate>2021</risdate><volume>1</volume><issue>7</issue><epage>n/a</epage><issn>2688-4046</issn><eissn>2688-4046</eissn><abstract>Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. Various kinds of flexible thermoelectric materials have been developed and some of them have been fabricated into flexible thermoelectric devices, showing the ability to generate nW‐level or even μW‐level electricity. Herein, the basic design principles and typical configurations of flexible thermoelectric devices, as well as the requirements on thermoelectric materials to achieve high performance flexible thermoelectric devices, are first introduced. Then, the recent progress achieved in flexible thermoelectric devices based on organics materials, traditional inorganic materials, other organic/inorganic composites/hybrids, and plastic deformable inorganic semiconductors, respectively, are summarized. Finally, an outlook on the future development of flexible thermoelectrics is briefly given. This study sheds light on the further development of flexible thermoelectrics. This review systematically summarizes 1) the basic design principles and typical configurations of flexible thermoelectric devices, 2) the requirements on thermoelectric materials to achieve flexible thermoelectrics, and 3) the recent progress in flexible thermoelectric devices based on different kinds of thermoelectric materials. Finally, this review briefly gives an outlook on the future development of flexible thermoelectrics.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/smsc.202100005</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8086-6407</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2688-4046
ispartof Small science, 2021-07, Vol.1 (7), p.n/a
issn 2688-4046
2688-4046
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_02ea17bceb5342bdb4c59ec900fa450f
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Cooling
Emission standards
Flexibility
flexible thermoelectric
Geometry
Heat conductivity
power density
self-powered technology
Semiconductors
wearables
title Recent Developments in Flexible Thermoelectric Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Developments%20in%20Flexible%20Thermoelectric%20Devices&rft.jtitle=Small%20science&rft.au=Yang,%20Shiqi&rft.date=2021-07&rft.volume=1&rft.issue=7&rft.epage=n/a&rft.issn=2688-4046&rft.eissn=2688-4046&rft_id=info:doi/10.1002/smsc.202100005&rft_dat=%3Cproquest_doaj_%3E2553162486%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553162486&rft_id=info:pmid/&rfr_iscdi=true