Loading…
Recent Developments in Flexible Thermoelectric Devices
Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. V...
Saved in:
Published in: | Small science 2021-07, Vol.1 (7), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33 |
container_end_page | n/a |
container_issue | 7 |
container_start_page | |
container_title | Small science |
container_volume | 1 |
creator | Yang, Shiqi Qiu, Pengfei Chen, Lidong Shi, Xun |
description | Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. Various kinds of flexible thermoelectric materials have been developed and some of them have been fabricated into flexible thermoelectric devices, showing the ability to generate nW‐level or even μW‐level electricity. Herein, the basic design principles and typical configurations of flexible thermoelectric devices, as well as the requirements on thermoelectric materials to achieve high performance flexible thermoelectric devices, are first introduced. Then, the recent progress achieved in flexible thermoelectric devices based on organics materials, traditional inorganic materials, other organic/inorganic composites/hybrids, and plastic deformable inorganic semiconductors, respectively, are summarized. Finally, an outlook on the future development of flexible thermoelectrics is briefly given. This study sheds light on the further development of flexible thermoelectrics.
This review systematically summarizes 1) the basic design principles and typical configurations of flexible thermoelectric devices, 2) the requirements on thermoelectric materials to achieve flexible thermoelectrics, and 3) the recent progress in flexible thermoelectric devices based on different kinds of thermoelectric materials. Finally, this review briefly gives an outlook on the future development of flexible thermoelectrics. |
doi_str_mv | 10.1002/smsc.202100005 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02ea17bceb5342bdb4c59ec900fa450f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02ea17bceb5342bdb4c59ec900fa450f</doaj_id><sourcerecordid>2553162486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33</originalsourceid><addsrcrecordid>eNqFkMFPwyAUxonRxGXu6rmJ506gQOFoptMlMyZunkmhr8rSrhM6df-91Br15um9R37fx5cPoXOCpwRjehmaYKcU03hgzI_QiAopU4aZOP6zn6JJCJtIUE5IrugIiUewsO2Sa3iDut01cQ-J2ybzGj6cqSFZv4BvWqjBdt7ZnnMWwhk6qYo6wOR7jtHT_GY9u0uXD7eL2dUytUwqnpZcqJwySSwnFZUswyrPLRaKQymEsbJihBjOoWCSq1JaY4DgiMs-XZVlY7QYfMu22Oidd03hD7otnP56aP2zLnznbA0aUyhIbiwYnjFqSsMsV2AVxlXBOK6i18XgtfPt6x5Cpzft3m9jfE05z4iIQUWkpgNlfRuCh-rnV4J1X7Xuq9Y_VUeBGgTvrobDP7Re3a9mv9pPveyAcA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553162486</pqid></control><display><type>article</type><title>Recent Developments in Flexible Thermoelectric Devices</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Yang, Shiqi ; Qiu, Pengfei ; Chen, Lidong ; Shi, Xun</creator><creatorcontrib>Yang, Shiqi ; Qiu, Pengfei ; Chen, Lidong ; Shi, Xun</creatorcontrib><description>Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. Various kinds of flexible thermoelectric materials have been developed and some of them have been fabricated into flexible thermoelectric devices, showing the ability to generate nW‐level or even μW‐level electricity. Herein, the basic design principles and typical configurations of flexible thermoelectric devices, as well as the requirements on thermoelectric materials to achieve high performance flexible thermoelectric devices, are first introduced. Then, the recent progress achieved in flexible thermoelectric devices based on organics materials, traditional inorganic materials, other organic/inorganic composites/hybrids, and plastic deformable inorganic semiconductors, respectively, are summarized. Finally, an outlook on the future development of flexible thermoelectrics is briefly given. This study sheds light on the further development of flexible thermoelectrics.
This review systematically summarizes 1) the basic design principles and typical configurations of flexible thermoelectric devices, 2) the requirements on thermoelectric materials to achieve flexible thermoelectrics, and 3) the recent progress in flexible thermoelectric devices based on different kinds of thermoelectric materials. Finally, this review briefly gives an outlook on the future development of flexible thermoelectrics.</description><identifier>ISSN: 2688-4046</identifier><identifier>EISSN: 2688-4046</identifier><identifier>DOI: 10.1002/smsc.202100005</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Cooling ; Emission standards ; Flexibility ; flexible thermoelectric ; Geometry ; Heat conductivity ; power density ; self-powered technology ; Semiconductors ; wearables</subject><ispartof>Small science, 2021-07, Vol.1 (7), p.n/a</ispartof><rights>2021 The Authors. Small Science published by Wiley‐VCH GmbH</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33</citedby><cites>FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33</cites><orcidid>0000-0002-8086-6407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2553162486/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2553162486?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,11541,25731,27901,27902,36989,44566,46027,46451,74869</link.rule.ids></links><search><creatorcontrib>Yang, Shiqi</creatorcontrib><creatorcontrib>Qiu, Pengfei</creatorcontrib><creatorcontrib>Chen, Lidong</creatorcontrib><creatorcontrib>Shi, Xun</creatorcontrib><title>Recent Developments in Flexible Thermoelectric Devices</title><title>Small science</title><description>Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. Various kinds of flexible thermoelectric materials have been developed and some of them have been fabricated into flexible thermoelectric devices, showing the ability to generate nW‐level or even μW‐level electricity. Herein, the basic design principles and typical configurations of flexible thermoelectric devices, as well as the requirements on thermoelectric materials to achieve high performance flexible thermoelectric devices, are first introduced. Then, the recent progress achieved in flexible thermoelectric devices based on organics materials, traditional inorganic materials, other organic/inorganic composites/hybrids, and plastic deformable inorganic semiconductors, respectively, are summarized. Finally, an outlook on the future development of flexible thermoelectrics is briefly given. This study sheds light on the further development of flexible thermoelectrics.
This review systematically summarizes 1) the basic design principles and typical configurations of flexible thermoelectric devices, 2) the requirements on thermoelectric materials to achieve flexible thermoelectrics, and 3) the recent progress in flexible thermoelectric devices based on different kinds of thermoelectric materials. Finally, this review briefly gives an outlook on the future development of flexible thermoelectrics.</description><subject>Cooling</subject><subject>Emission standards</subject><subject>Flexibility</subject><subject>flexible thermoelectric</subject><subject>Geometry</subject><subject>Heat conductivity</subject><subject>power density</subject><subject>self-powered technology</subject><subject>Semiconductors</subject><subject>wearables</subject><issn>2688-4046</issn><issn>2688-4046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkMFPwyAUxonRxGXu6rmJ506gQOFoptMlMyZunkmhr8rSrhM6df-91Br15um9R37fx5cPoXOCpwRjehmaYKcU03hgzI_QiAopU4aZOP6zn6JJCJtIUE5IrugIiUewsO2Sa3iDut01cQ-J2ybzGj6cqSFZv4BvWqjBdt7ZnnMWwhk6qYo6wOR7jtHT_GY9u0uXD7eL2dUytUwqnpZcqJwySSwnFZUswyrPLRaKQymEsbJihBjOoWCSq1JaY4DgiMs-XZVlY7QYfMu22Oidd03hD7otnP56aP2zLnznbA0aUyhIbiwYnjFqSsMsV2AVxlXBOK6i18XgtfPt6x5Cpzft3m9jfE05z4iIQUWkpgNlfRuCh-rnV4J1X7Xuq9Y_VUeBGgTvrobDP7Re3a9mv9pPveyAcA</recordid><startdate>202107</startdate><enddate>202107</enddate><creator>Yang, Shiqi</creator><creator>Qiu, Pengfei</creator><creator>Chen, Lidong</creator><creator>Shi, Xun</creator><general>John Wiley & Sons, Inc</general><general>Wiley-VCH</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8086-6407</orcidid></search><sort><creationdate>202107</creationdate><title>Recent Developments in Flexible Thermoelectric Devices</title><author>Yang, Shiqi ; Qiu, Pengfei ; Chen, Lidong ; Shi, Xun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cooling</topic><topic>Emission standards</topic><topic>Flexibility</topic><topic>flexible thermoelectric</topic><topic>Geometry</topic><topic>Heat conductivity</topic><topic>power density</topic><topic>self-powered technology</topic><topic>Semiconductors</topic><topic>wearables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shiqi</creatorcontrib><creatorcontrib>Qiu, Pengfei</creatorcontrib><creatorcontrib>Chen, Lidong</creatorcontrib><creatorcontrib>Shi, Xun</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Small science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shiqi</au><au>Qiu, Pengfei</au><au>Chen, Lidong</au><au>Shi, Xun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Developments in Flexible Thermoelectric Devices</atitle><jtitle>Small science</jtitle><date>2021-07</date><risdate>2021</risdate><volume>1</volume><issue>7</issue><epage>n/a</epage><issn>2688-4046</issn><eissn>2688-4046</eissn><abstract>Flexible thermoelectrics, including flexible thermoelectric materials and devices, can directly convert the heat from human body into useful electricity, providing a promising solution for uninterrupted power to wearables. In the past decade, flexible thermoelectrics has achieved notable progress. Various kinds of flexible thermoelectric materials have been developed and some of them have been fabricated into flexible thermoelectric devices, showing the ability to generate nW‐level or even μW‐level electricity. Herein, the basic design principles and typical configurations of flexible thermoelectric devices, as well as the requirements on thermoelectric materials to achieve high performance flexible thermoelectric devices, are first introduced. Then, the recent progress achieved in flexible thermoelectric devices based on organics materials, traditional inorganic materials, other organic/inorganic composites/hybrids, and plastic deformable inorganic semiconductors, respectively, are summarized. Finally, an outlook on the future development of flexible thermoelectrics is briefly given. This study sheds light on the further development of flexible thermoelectrics.
This review systematically summarizes 1) the basic design principles and typical configurations of flexible thermoelectric devices, 2) the requirements on thermoelectric materials to achieve flexible thermoelectrics, and 3) the recent progress in flexible thermoelectric devices based on different kinds of thermoelectric materials. Finally, this review briefly gives an outlook on the future development of flexible thermoelectrics.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/smsc.202100005</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8086-6407</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2688-4046 |
ispartof | Small science, 2021-07, Vol.1 (7), p.n/a |
issn | 2688-4046 2688-4046 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_02ea17bceb5342bdb4c59ec900fa450f |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Cooling Emission standards Flexibility flexible thermoelectric Geometry Heat conductivity power density self-powered technology Semiconductors wearables |
title | Recent Developments in Flexible Thermoelectric Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Developments%20in%20Flexible%20Thermoelectric%20Devices&rft.jtitle=Small%20science&rft.au=Yang,%20Shiqi&rft.date=2021-07&rft.volume=1&rft.issue=7&rft.epage=n/a&rft.issn=2688-4046&rft.eissn=2688-4046&rft_id=info:doi/10.1002/smsc.202100005&rft_dat=%3Cproquest_doaj_%3E2553162486%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4895-d56972481c51f28430977c0695ed66bc8f411b55ea4859d8cbbe1081c81792f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553162486&rft_id=info:pmid/&rfr_iscdi=true |