Loading…
Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates
A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) mo...
Saved in:
Published in: | Healthcare (Basel) 2023-11, Vol.11 (21), p.2863 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623 |
container_end_page | |
container_issue | 21 |
container_start_page | 2863 |
container_title | Healthcare (Basel) |
container_volume | 11 |
creator | Lee, Hyun Yu, Woosik Choi, Jong Lee, Young-sin Park, Ji Jung, Yun Sheen, Seung Jung, Junho Haam, Seokjin Kim, Sang Park, Ji |
description | A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) monitoring device in candidates for lung resection. This prospective, single-center study included 42 patients who underwent a CPET at a tertiary teaching hospital from October 2021 to July 2022. During the CPET, a single-lead ECG monitoring device was applied to all patients, and the results obtained from the machine-learning algorithm using the information extracted from the ECG patch were compared with the CPET results. According to the Bland–Altman plot of measured and estimated VO2max, the VO2max values obtained from the machine learning model and the FRIEND equation showed lower differences from the reference value (bias: −0.33 mL·kg−1·min−1, bias: 0.30 mL·kg−1·min−1, respectively). In subgroup analysis, the developed model demonstrated greater consistency when applied to different maximal stage levels and sexes. In conclusion, our model provides a closer estimation of VO2max values measured using a CPET than existing equations. This model may be a promising tool for estimating VO2max and assessing cardiopulmonary reserve in lung resection candidates when a CPET is not feasible. |
doi_str_mv | 10.3390/healthcare11212863 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02ee12233a6443e29f133a23b9d5545a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02ee12233a6443e29f133a23b9d5545a</doaj_id><sourcerecordid>2889999013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623</originalsourceid><addsrcrecordid>eNplkc9uEzEQxlcIJKrQF-BkiQuXBXu8f-wjCmmolKoIWq6riXfcONrYwXYQfYi-c50GIVTmMuPR7_s8o6mqt4J_kFLzjxvCKW8MRhICBKhOvqjOAKCvNZfw8p_6dXWe0paX0EIq2Z5VD5_pF01hvyOfWbDsCs3GeWIrwuidv2NXYaSJ2RDZj2vY4W-2SNntMLvg2W06Esi-Yjab-uZ-T-x76UxUF_nIFvNlkXuXQzxy5SdniDnPVofy_EaJzJPNHP3oRsyU3lSvLE6Jzv_kWXV7sbiZf6lX18vL-adVbRqhcq1RNoK3Cvp2bEgY3WocsUfLlSXkKDlp6AG6dm3WamxbaS1a24GFZmw6kLPq8uQ7BtwO-1gWivdDQDc8NUK8GzBmZyYaOBAJACmxaxpJoK0oNci1Lr5Ni8Xr_clrH8PPA6U87FwyNE3oKRzSAErpErzIZtW7Z-g2HKIvmx4pJWTf9apQcKJMDClFsn8HFHw4Hnz4_-DyEbAin6k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888137678</pqid></control><display><type>article</type><title>Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Lee, Hyun ; Yu, Woosik ; Choi, Jong ; Lee, Young-sin ; Park, Ji ; Jung, Yun ; Sheen, Seung ; Jung, Junho ; Haam, Seokjin ; Kim, Sang ; Park, Ji</creator><creatorcontrib>Lee, Hyun ; Yu, Woosik ; Choi, Jong ; Lee, Young-sin ; Park, Ji ; Jung, Yun ; Sheen, Seung ; Jung, Junho ; Haam, Seokjin ; Kim, Sang ; Park, Ji</creatorcontrib><description>A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) monitoring device in candidates for lung resection. This prospective, single-center study included 42 patients who underwent a CPET at a tertiary teaching hospital from October 2021 to July 2022. During the CPET, a single-lead ECG monitoring device was applied to all patients, and the results obtained from the machine-learning algorithm using the information extracted from the ECG patch were compared with the CPET results. According to the Bland–Altman plot of measured and estimated VO2max, the VO2max values obtained from the machine learning model and the FRIEND equation showed lower differences from the reference value (bias: −0.33 mL·kg−1·min−1, bias: 0.30 mL·kg−1·min−1, respectively). In subgroup analysis, the developed model demonstrated greater consistency when applied to different maximal stage levels and sexes. In conclusion, our model provides a closer estimation of VO2max values measured using a CPET than existing equations. This model may be a promising tool for estimating VO2max and assessing cardiopulmonary reserve in lung resection candidates when a CPET is not feasible.</description><identifier>ISSN: 2227-9032</identifier><identifier>EISSN: 2227-9032</identifier><identifier>DOI: 10.3390/healthcare11212863</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Blood pressure ; cardiopulmonary exercise test (CPET) ; Electrocardiography ; estimation ; Exercise ; Feature selection ; Fitness equipment ; Heart rate ; Lung cancer ; lung resection candidates ; Machine learning ; machine learning model ; maximal oxygen consumption (VO2max) ; Mortality ; Ostomy ; Patients ; Physical fitness ; Semantics ; Surgery ; Surgical outcomes ; Wearable computers</subject><ispartof>Healthcare (Basel), 2023-11, Vol.11 (21), p.2863</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623</citedby><cites>FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623</cites><orcidid>0000-0002-0286-8124 ; 0000-0001-9219-804X ; 0000-0002-3035-6353 ; 0000-0003-4849-5228 ; 0000-0002-8887-0881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2888137678/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2888137678?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><creatorcontrib>Lee, Hyun</creatorcontrib><creatorcontrib>Yu, Woosik</creatorcontrib><creatorcontrib>Choi, Jong</creatorcontrib><creatorcontrib>Lee, Young-sin</creatorcontrib><creatorcontrib>Park, Ji</creatorcontrib><creatorcontrib>Jung, Yun</creatorcontrib><creatorcontrib>Sheen, Seung</creatorcontrib><creatorcontrib>Jung, Junho</creatorcontrib><creatorcontrib>Haam, Seokjin</creatorcontrib><creatorcontrib>Kim, Sang</creatorcontrib><creatorcontrib>Park, Ji</creatorcontrib><title>Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates</title><title>Healthcare (Basel)</title><description>A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) monitoring device in candidates for lung resection. This prospective, single-center study included 42 patients who underwent a CPET at a tertiary teaching hospital from October 2021 to July 2022. During the CPET, a single-lead ECG monitoring device was applied to all patients, and the results obtained from the machine-learning algorithm using the information extracted from the ECG patch were compared with the CPET results. According to the Bland–Altman plot of measured and estimated VO2max, the VO2max values obtained from the machine learning model and the FRIEND equation showed lower differences from the reference value (bias: −0.33 mL·kg−1·min−1, bias: 0.30 mL·kg−1·min−1, respectively). In subgroup analysis, the developed model demonstrated greater consistency when applied to different maximal stage levels and sexes. In conclusion, our model provides a closer estimation of VO2max values measured using a CPET than existing equations. This model may be a promising tool for estimating VO2max and assessing cardiopulmonary reserve in lung resection candidates when a CPET is not feasible.</description><subject>Blood pressure</subject><subject>cardiopulmonary exercise test (CPET)</subject><subject>Electrocardiography</subject><subject>estimation</subject><subject>Exercise</subject><subject>Feature selection</subject><subject>Fitness equipment</subject><subject>Heart rate</subject><subject>Lung cancer</subject><subject>lung resection candidates</subject><subject>Machine learning</subject><subject>machine learning model</subject><subject>maximal oxygen consumption (VO2max)</subject><subject>Mortality</subject><subject>Ostomy</subject><subject>Patients</subject><subject>Physical fitness</subject><subject>Semantics</subject><subject>Surgery</subject><subject>Surgical outcomes</subject><subject>Wearable computers</subject><issn>2227-9032</issn><issn>2227-9032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkc9uEzEQxlcIJKrQF-BkiQuXBXu8f-wjCmmolKoIWq6riXfcONrYwXYQfYi-c50GIVTmMuPR7_s8o6mqt4J_kFLzjxvCKW8MRhICBKhOvqjOAKCvNZfw8p_6dXWe0paX0EIq2Z5VD5_pF01hvyOfWbDsCs3GeWIrwuidv2NXYaSJ2RDZj2vY4W-2SNntMLvg2W06Esi-Yjab-uZ-T-x76UxUF_nIFvNlkXuXQzxy5SdniDnPVofy_EaJzJPNHP3oRsyU3lSvLE6Jzv_kWXV7sbiZf6lX18vL-adVbRqhcq1RNoK3Cvp2bEgY3WocsUfLlSXkKDlp6AG6dm3WamxbaS1a24GFZmw6kLPq8uQ7BtwO-1gWivdDQDc8NUK8GzBmZyYaOBAJACmxaxpJoK0oNci1Lr5Ni8Xr_clrH8PPA6U87FwyNE3oKRzSAErpErzIZtW7Z-g2HKIvmx4pJWTf9apQcKJMDClFsn8HFHw4Hnz4_-DyEbAin6k</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Lee, Hyun</creator><creator>Yu, Woosik</creator><creator>Choi, Jong</creator><creator>Lee, Young-sin</creator><creator>Park, Ji</creator><creator>Jung, Yun</creator><creator>Sheen, Seung</creator><creator>Jung, Junho</creator><creator>Haam, Seokjin</creator><creator>Kim, Sang</creator><creator>Park, Ji</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KB0</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0286-8124</orcidid><orcidid>https://orcid.org/0000-0001-9219-804X</orcidid><orcidid>https://orcid.org/0000-0002-3035-6353</orcidid><orcidid>https://orcid.org/0000-0003-4849-5228</orcidid><orcidid>https://orcid.org/0000-0002-8887-0881</orcidid></search><sort><creationdate>20231101</creationdate><title>Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates</title><author>Lee, Hyun ; Yu, Woosik ; Choi, Jong ; Lee, Young-sin ; Park, Ji ; Jung, Yun ; Sheen, Seung ; Jung, Junho ; Haam, Seokjin ; Kim, Sang ; Park, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blood pressure</topic><topic>cardiopulmonary exercise test (CPET)</topic><topic>Electrocardiography</topic><topic>estimation</topic><topic>Exercise</topic><topic>Feature selection</topic><topic>Fitness equipment</topic><topic>Heart rate</topic><topic>Lung cancer</topic><topic>lung resection candidates</topic><topic>Machine learning</topic><topic>machine learning model</topic><topic>maximal oxygen consumption (VO2max)</topic><topic>Mortality</topic><topic>Ostomy</topic><topic>Patients</topic><topic>Physical fitness</topic><topic>Semantics</topic><topic>Surgery</topic><topic>Surgical outcomes</topic><topic>Wearable computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyun</creatorcontrib><creatorcontrib>Yu, Woosik</creatorcontrib><creatorcontrib>Choi, Jong</creatorcontrib><creatorcontrib>Lee, Young-sin</creatorcontrib><creatorcontrib>Park, Ji</creatorcontrib><creatorcontrib>Jung, Yun</creatorcontrib><creatorcontrib>Sheen, Seung</creatorcontrib><creatorcontrib>Jung, Junho</creatorcontrib><creatorcontrib>Haam, Seokjin</creatorcontrib><creatorcontrib>Kim, Sang</creatorcontrib><creatorcontrib>Park, Ji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Healthcare (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyun</au><au>Yu, Woosik</au><au>Choi, Jong</au><au>Lee, Young-sin</au><au>Park, Ji</au><au>Jung, Yun</au><au>Sheen, Seung</au><au>Jung, Junho</au><au>Haam, Seokjin</au><au>Kim, Sang</au><au>Park, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates</atitle><jtitle>Healthcare (Basel)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>11</volume><issue>21</issue><spage>2863</spage><pages>2863-</pages><issn>2227-9032</issn><eissn>2227-9032</eissn><abstract>A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) monitoring device in candidates for lung resection. This prospective, single-center study included 42 patients who underwent a CPET at a tertiary teaching hospital from October 2021 to July 2022. During the CPET, a single-lead ECG monitoring device was applied to all patients, and the results obtained from the machine-learning algorithm using the information extracted from the ECG patch were compared with the CPET results. According to the Bland–Altman plot of measured and estimated VO2max, the VO2max values obtained from the machine learning model and the FRIEND equation showed lower differences from the reference value (bias: −0.33 mL·kg−1·min−1, bias: 0.30 mL·kg−1·min−1, respectively). In subgroup analysis, the developed model demonstrated greater consistency when applied to different maximal stage levels and sexes. In conclusion, our model provides a closer estimation of VO2max values measured using a CPET than existing equations. This model may be a promising tool for estimating VO2max and assessing cardiopulmonary reserve in lung resection candidates when a CPET is not feasible.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/healthcare11212863</doi><orcidid>https://orcid.org/0000-0002-0286-8124</orcidid><orcidid>https://orcid.org/0000-0001-9219-804X</orcidid><orcidid>https://orcid.org/0000-0002-3035-6353</orcidid><orcidid>https://orcid.org/0000-0003-4849-5228</orcidid><orcidid>https://orcid.org/0000-0002-8887-0881</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9032 |
ispartof | Healthcare (Basel), 2023-11, Vol.11 (21), p.2863 |
issn | 2227-9032 2227-9032 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_02ee12233a6443e29f133a23b9d5545a |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Blood pressure cardiopulmonary exercise test (CPET) Electrocardiography estimation Exercise Feature selection Fitness equipment Heart rate Lung cancer lung resection candidates Machine learning machine learning model maximal oxygen consumption (VO2max) Mortality Ostomy Patients Physical fitness Semantics Surgery Surgical outcomes Wearable computers |
title | Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Machine%20Learning%20Model%20for%20VO2max%20Estimation%20Using%20a%20Patch-Type%20Single-Lead%20ECG%20Monitoring%20Device%20in%20Lung%20Resection%20Candidates&rft.jtitle=Healthcare%20(Basel)&rft.au=Lee,%20Hyun&rft.date=2023-11-01&rft.volume=11&rft.issue=21&rft.spage=2863&rft.pages=2863-&rft.issn=2227-9032&rft.eissn=2227-9032&rft_id=info:doi/10.3390/healthcare11212863&rft_dat=%3Cproquest_doaj_%3E2889999013%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888137678&rft_id=info:pmid/&rfr_iscdi=true |