Loading…

Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates

A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) mo...

Full description

Saved in:
Bibliographic Details
Published in:Healthcare (Basel) 2023-11, Vol.11 (21), p.2863
Main Authors: Lee, Hyun, Yu, Woosik, Choi, Jong, Lee, Young-sin, Park, Ji, Jung, Yun, Sheen, Seung, Jung, Junho, Haam, Seokjin, Kim, Sang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623
cites cdi_FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623
container_end_page
container_issue 21
container_start_page 2863
container_title Healthcare (Basel)
container_volume 11
creator Lee, Hyun
Yu, Woosik
Choi, Jong
Lee, Young-sin
Park, Ji
Jung, Yun
Sheen, Seung
Jung, Junho
Haam, Seokjin
Kim, Sang
Park, Ji
description A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) monitoring device in candidates for lung resection. This prospective, single-center study included 42 patients who underwent a CPET at a tertiary teaching hospital from October 2021 to July 2022. During the CPET, a single-lead ECG monitoring device was applied to all patients, and the results obtained from the machine-learning algorithm using the information extracted from the ECG patch were compared with the CPET results. According to the Bland–Altman plot of measured and estimated VO2max, the VO2max values obtained from the machine learning model and the FRIEND equation showed lower differences from the reference value (bias: −0.33 mL·kg−1·min−1, bias: 0.30 mL·kg−1·min−1, respectively). In subgroup analysis, the developed model demonstrated greater consistency when applied to different maximal stage levels and sexes. In conclusion, our model provides a closer estimation of VO2max values measured using a CPET than existing equations. This model may be a promising tool for estimating VO2max and assessing cardiopulmonary reserve in lung resection candidates when a CPET is not feasible.
doi_str_mv 10.3390/healthcare11212863
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_02ee12233a6443e29f133a23b9d5545a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_02ee12233a6443e29f133a23b9d5545a</doaj_id><sourcerecordid>2889999013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623</originalsourceid><addsrcrecordid>eNplkc9uEzEQxlcIJKrQF-BkiQuXBXu8f-wjCmmolKoIWq6riXfcONrYwXYQfYi-c50GIVTmMuPR7_s8o6mqt4J_kFLzjxvCKW8MRhICBKhOvqjOAKCvNZfw8p_6dXWe0paX0EIq2Z5VD5_pF01hvyOfWbDsCs3GeWIrwuidv2NXYaSJ2RDZj2vY4W-2SNntMLvg2W06Esi-Yjab-uZ-T-x76UxUF_nIFvNlkXuXQzxy5SdniDnPVofy_EaJzJPNHP3oRsyU3lSvLE6Jzv_kWXV7sbiZf6lX18vL-adVbRqhcq1RNoK3Cvp2bEgY3WocsUfLlSXkKDlp6AG6dm3WamxbaS1a24GFZmw6kLPq8uQ7BtwO-1gWivdDQDc8NUK8GzBmZyYaOBAJACmxaxpJoK0oNci1Lr5Ni8Xr_clrH8PPA6U87FwyNE3oKRzSAErpErzIZtW7Z-g2HKIvmx4pJWTf9apQcKJMDClFsn8HFHw4Hnz4_-DyEbAin6k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2888137678</pqid></control><display><type>article</type><title>Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Lee, Hyun ; Yu, Woosik ; Choi, Jong ; Lee, Young-sin ; Park, Ji ; Jung, Yun ; Sheen, Seung ; Jung, Junho ; Haam, Seokjin ; Kim, Sang ; Park, Ji</creator><creatorcontrib>Lee, Hyun ; Yu, Woosik ; Choi, Jong ; Lee, Young-sin ; Park, Ji ; Jung, Yun ; Sheen, Seung ; Jung, Junho ; Haam, Seokjin ; Kim, Sang ; Park, Ji</creatorcontrib><description>A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) monitoring device in candidates for lung resection. This prospective, single-center study included 42 patients who underwent a CPET at a tertiary teaching hospital from October 2021 to July 2022. During the CPET, a single-lead ECG monitoring device was applied to all patients, and the results obtained from the machine-learning algorithm using the information extracted from the ECG patch were compared with the CPET results. According to the Bland–Altman plot of measured and estimated VO2max, the VO2max values obtained from the machine learning model and the FRIEND equation showed lower differences from the reference value (bias: −0.33 mL·kg−1·min−1, bias: 0.30 mL·kg−1·min−1, respectively). In subgroup analysis, the developed model demonstrated greater consistency when applied to different maximal stage levels and sexes. In conclusion, our model provides a closer estimation of VO2max values measured using a CPET than existing equations. This model may be a promising tool for estimating VO2max and assessing cardiopulmonary reserve in lung resection candidates when a CPET is not feasible.</description><identifier>ISSN: 2227-9032</identifier><identifier>EISSN: 2227-9032</identifier><identifier>DOI: 10.3390/healthcare11212863</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Blood pressure ; cardiopulmonary exercise test (CPET) ; Electrocardiography ; estimation ; Exercise ; Feature selection ; Fitness equipment ; Heart rate ; Lung cancer ; lung resection candidates ; Machine learning ; machine learning model ; maximal oxygen consumption (VO2max) ; Mortality ; Ostomy ; Patients ; Physical fitness ; Semantics ; Surgery ; Surgical outcomes ; Wearable computers</subject><ispartof>Healthcare (Basel), 2023-11, Vol.11 (21), p.2863</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623</citedby><cites>FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623</cites><orcidid>0000-0002-0286-8124 ; 0000-0001-9219-804X ; 0000-0002-3035-6353 ; 0000-0003-4849-5228 ; 0000-0002-8887-0881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2888137678/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2888137678?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><creatorcontrib>Lee, Hyun</creatorcontrib><creatorcontrib>Yu, Woosik</creatorcontrib><creatorcontrib>Choi, Jong</creatorcontrib><creatorcontrib>Lee, Young-sin</creatorcontrib><creatorcontrib>Park, Ji</creatorcontrib><creatorcontrib>Jung, Yun</creatorcontrib><creatorcontrib>Sheen, Seung</creatorcontrib><creatorcontrib>Jung, Junho</creatorcontrib><creatorcontrib>Haam, Seokjin</creatorcontrib><creatorcontrib>Kim, Sang</creatorcontrib><creatorcontrib>Park, Ji</creatorcontrib><title>Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates</title><title>Healthcare (Basel)</title><description>A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) monitoring device in candidates for lung resection. This prospective, single-center study included 42 patients who underwent a CPET at a tertiary teaching hospital from October 2021 to July 2022. During the CPET, a single-lead ECG monitoring device was applied to all patients, and the results obtained from the machine-learning algorithm using the information extracted from the ECG patch were compared with the CPET results. According to the Bland–Altman plot of measured and estimated VO2max, the VO2max values obtained from the machine learning model and the FRIEND equation showed lower differences from the reference value (bias: −0.33 mL·kg−1·min−1, bias: 0.30 mL·kg−1·min−1, respectively). In subgroup analysis, the developed model demonstrated greater consistency when applied to different maximal stage levels and sexes. In conclusion, our model provides a closer estimation of VO2max values measured using a CPET than existing equations. This model may be a promising tool for estimating VO2max and assessing cardiopulmonary reserve in lung resection candidates when a CPET is not feasible.</description><subject>Blood pressure</subject><subject>cardiopulmonary exercise test (CPET)</subject><subject>Electrocardiography</subject><subject>estimation</subject><subject>Exercise</subject><subject>Feature selection</subject><subject>Fitness equipment</subject><subject>Heart rate</subject><subject>Lung cancer</subject><subject>lung resection candidates</subject><subject>Machine learning</subject><subject>machine learning model</subject><subject>maximal oxygen consumption (VO2max)</subject><subject>Mortality</subject><subject>Ostomy</subject><subject>Patients</subject><subject>Physical fitness</subject><subject>Semantics</subject><subject>Surgery</subject><subject>Surgical outcomes</subject><subject>Wearable computers</subject><issn>2227-9032</issn><issn>2227-9032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkc9uEzEQxlcIJKrQF-BkiQuXBXu8f-wjCmmolKoIWq6riXfcONrYwXYQfYi-c50GIVTmMuPR7_s8o6mqt4J_kFLzjxvCKW8MRhICBKhOvqjOAKCvNZfw8p_6dXWe0paX0EIq2Z5VD5_pF01hvyOfWbDsCs3GeWIrwuidv2NXYaSJ2RDZj2vY4W-2SNntMLvg2W06Esi-Yjab-uZ-T-x76UxUF_nIFvNlkXuXQzxy5SdniDnPVofy_EaJzJPNHP3oRsyU3lSvLE6Jzv_kWXV7sbiZf6lX18vL-adVbRqhcq1RNoK3Cvp2bEgY3WocsUfLlSXkKDlp6AG6dm3WamxbaS1a24GFZmw6kLPq8uQ7BtwO-1gWivdDQDc8NUK8GzBmZyYaOBAJACmxaxpJoK0oNci1Lr5Ni8Xr_clrH8PPA6U87FwyNE3oKRzSAErpErzIZtW7Z-g2HKIvmx4pJWTf9apQcKJMDClFsn8HFHw4Hnz4_-DyEbAin6k</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Lee, Hyun</creator><creator>Yu, Woosik</creator><creator>Choi, Jong</creator><creator>Lee, Young-sin</creator><creator>Park, Ji</creator><creator>Jung, Yun</creator><creator>Sheen, Seung</creator><creator>Jung, Junho</creator><creator>Haam, Seokjin</creator><creator>Kim, Sang</creator><creator>Park, Ji</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7XB</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>KB0</scope><scope>M2O</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0286-8124</orcidid><orcidid>https://orcid.org/0000-0001-9219-804X</orcidid><orcidid>https://orcid.org/0000-0002-3035-6353</orcidid><orcidid>https://orcid.org/0000-0003-4849-5228</orcidid><orcidid>https://orcid.org/0000-0002-8887-0881</orcidid></search><sort><creationdate>20231101</creationdate><title>Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates</title><author>Lee, Hyun ; Yu, Woosik ; Choi, Jong ; Lee, Young-sin ; Park, Ji ; Jung, Yun ; Sheen, Seung ; Jung, Junho ; Haam, Seokjin ; Kim, Sang ; Park, Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Blood pressure</topic><topic>cardiopulmonary exercise test (CPET)</topic><topic>Electrocardiography</topic><topic>estimation</topic><topic>Exercise</topic><topic>Feature selection</topic><topic>Fitness equipment</topic><topic>Heart rate</topic><topic>Lung cancer</topic><topic>lung resection candidates</topic><topic>Machine learning</topic><topic>machine learning model</topic><topic>maximal oxygen consumption (VO2max)</topic><topic>Mortality</topic><topic>Ostomy</topic><topic>Patients</topic><topic>Physical fitness</topic><topic>Semantics</topic><topic>Surgery</topic><topic>Surgical outcomes</topic><topic>Wearable computers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyun</creatorcontrib><creatorcontrib>Yu, Woosik</creatorcontrib><creatorcontrib>Choi, Jong</creatorcontrib><creatorcontrib>Lee, Young-sin</creatorcontrib><creatorcontrib>Park, Ji</creatorcontrib><creatorcontrib>Jung, Yun</creatorcontrib><creatorcontrib>Sheen, Seung</creatorcontrib><creatorcontrib>Jung, Junho</creatorcontrib><creatorcontrib>Haam, Seokjin</creatorcontrib><creatorcontrib>Kim, Sang</creatorcontrib><creatorcontrib>Park, Ji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Healthcare (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyun</au><au>Yu, Woosik</au><au>Choi, Jong</au><au>Lee, Young-sin</au><au>Park, Ji</au><au>Jung, Yun</au><au>Sheen, Seung</au><au>Jung, Junho</au><au>Haam, Seokjin</au><au>Kim, Sang</au><au>Park, Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates</atitle><jtitle>Healthcare (Basel)</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>11</volume><issue>21</issue><spage>2863</spage><pages>2863-</pages><issn>2227-9032</issn><eissn>2227-9032</eissn><abstract>A cardiopulmonary exercise test (CPET) is essential for lung resection. However, performing a CPET can be challenging. This study aimed to develop a machine learning model to estimate maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electrocardiogram (ECG) monitoring device in candidates for lung resection. This prospective, single-center study included 42 patients who underwent a CPET at a tertiary teaching hospital from October 2021 to July 2022. During the CPET, a single-lead ECG monitoring device was applied to all patients, and the results obtained from the machine-learning algorithm using the information extracted from the ECG patch were compared with the CPET results. According to the Bland–Altman plot of measured and estimated VO2max, the VO2max values obtained from the machine learning model and the FRIEND equation showed lower differences from the reference value (bias: −0.33 mL·kg−1·min−1, bias: 0.30 mL·kg−1·min−1, respectively). In subgroup analysis, the developed model demonstrated greater consistency when applied to different maximal stage levels and sexes. In conclusion, our model provides a closer estimation of VO2max values measured using a CPET than existing equations. This model may be a promising tool for estimating VO2max and assessing cardiopulmonary reserve in lung resection candidates when a CPET is not feasible.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/healthcare11212863</doi><orcidid>https://orcid.org/0000-0002-0286-8124</orcidid><orcidid>https://orcid.org/0000-0001-9219-804X</orcidid><orcidid>https://orcid.org/0000-0002-3035-6353</orcidid><orcidid>https://orcid.org/0000-0003-4849-5228</orcidid><orcidid>https://orcid.org/0000-0002-8887-0881</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9032
ispartof Healthcare (Basel), 2023-11, Vol.11 (21), p.2863
issn 2227-9032
2227-9032
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_02ee12233a6443e29f133a23b9d5545a
source Publicly Available Content (ProQuest); PubMed Central
subjects Blood pressure
cardiopulmonary exercise test (CPET)
Electrocardiography
estimation
Exercise
Feature selection
Fitness equipment
Heart rate
Lung cancer
lung resection candidates
Machine learning
machine learning model
maximal oxygen consumption (VO2max)
Mortality
Ostomy
Patients
Physical fitness
Semantics
Surgery
Surgical outcomes
Wearable computers
title Development of Machine Learning Model for VO2max Estimation Using a Patch-Type Single-Lead ECG Monitoring Device in Lung Resection Candidates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Machine%20Learning%20Model%20for%20VO2max%20Estimation%20Using%20a%20Patch-Type%20Single-Lead%20ECG%20Monitoring%20Device%20in%20Lung%20Resection%20Candidates&rft.jtitle=Healthcare%20(Basel)&rft.au=Lee,%20Hyun&rft.date=2023-11-01&rft.volume=11&rft.issue=21&rft.spage=2863&rft.pages=2863-&rft.issn=2227-9032&rft.eissn=2227-9032&rft_id=info:doi/10.3390/healthcare11212863&rft_dat=%3Cproquest_doaj_%3E2889999013%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-9a341058275d4e1c959ada7af08fea0a30e9272265bcb8d553ffaff62f24d4623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2888137678&rft_id=info:pmid/&rfr_iscdi=true