Loading…

Studies of Bis-(Sodium-Sulfopropyl)-Disulfide and 3-Mercapto-1-Propanesulfonate on/into the Copper Electrodeposited Layer by Time-of-Flight Secondary-Ion Mass Spectrometry

Interactions of functional additives SPS (bis-(sodium-sulfopropyl)-disulfide), MPS (3-Mercapto-1-Propanesulfonate), and Cl accumulated and incorporated on/into a copper electrodeposited layer were studied using time-of-flight secondary-ion mass spectrometry (TOF-SIMS) in combination with cyclic volt...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2022-11, Vol.27 (23), p.8116
Main Authors: Mroczka, Robert, Słodkowska, Agnieszka, Ładniak, Agata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interactions of functional additives SPS (bis-(sodium-sulfopropyl)-disulfide), MPS (3-Mercapto-1-Propanesulfonate), and Cl accumulated and incorporated on/into a copper electrodeposited layer were studied using time-of-flight secondary-ion mass spectrometry (TOF-SIMS) in combination with cyclic voltammetry measurements (CV). It was shown that the Cl and MPS surface coverage is dependent on the applied overpotential and concentration of Cl, SPS, or MPS in the solution. Detailed discussion on the mechanism of yielding CH SO , C H SO , CuSC H SO , and CuS fragments and their assignment to the gauche or trans conformation was proposed. The mechanism of the process of incorporation and re-adsorption of MPS on/into a copper surface under electrochemical conditions without and with chloride ions and its impact on electrochemical properties was proposed. Moreover, it was shown that the presence of chloride ions, the ratio gauche/trans of MPS molecules, as well as the ratio chloride/thiols demonstrate a high impact on the accelerating abilities. Comparative studies conducted under open circuit potential conditions on the nitinol and copper substrate allowed for the identification of specific reactions/interactions of MPS, or SPS and Cl ions on the nitinol and copper surface.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27238116