Loading…
Resolving the muon g − 2 tension through Z′-induced modifications to σhad
A bstract The QED hadronic vacuum polarization function plays an important role in the determination of precision electroweak observables and of the anomalous magnetic moment of the muon. These contributions have been computed from data, by means of dispersion relations affecting the electron positr...
Saved in:
Published in: | The journal of high energy physics 2023-12, Vol.2023 (12), p.71-26, Article 71 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A
bstract
The QED hadronic vacuum polarization function plays an important role in the determination of precision electroweak observables and of the anomalous magnetic moment of the muon. These contributions have been computed from data, by means of dispersion relations affecting the electron positron hadronic cross sections, or by first principle lattice-QCD computations in the Standard Model. Today there is a discrepancy between the two approaches for determining these contributions, which affects the comparison of the measurement of the anomalous magnetic moment of the muon with the theoretical predictions. In this article, we revisit the idea that this discrepancy may be explained by the presence of a new light gauge boson that couples to the first generation quark and leptons and has a mass below the GeV scale. We discuss the requirements for its consistency with observations and the phenomenological implications of such a gauge extension. |
---|---|
ISSN: | 1029-8479 1029-8479 |
DOI: | 10.1007/JHEP12(2023)071 |