Loading…

Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists

Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids’ non-oxidative decarboxylation to hydroxybenzene...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-02, Vol.11 (1), p.3056-3056, Article 3056
Main Authors: Zeug, Matthias, Markovic, Nebojsa, Iancu, Cristina V., Tripp, Joanna, Oreb, Mislav, Choe, Jun-yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c577t-d89b26d5d4aa7eabf06f525076f9abd14917dc0a35d5c450a442c3c8bab565413
cites cdi_FETCH-LOGICAL-c577t-d89b26d5d4aa7eabf06f525076f9abd14917dc0a35d5c450a442c3c8bab565413
container_end_page 3056
container_issue 1
container_start_page 3056
container_title Scientific reports
container_volume 11
creator Zeug, Matthias
Markovic, Nebojsa
Iancu, Cristina V.
Tripp, Joanna
Oreb, Mislav
Choe, Jun-yong
description Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids’ non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases. Here, we report the crystal structures (1.5–1.9 Å) of two homologous fungal decarboxylases, AGDC1 from  Arxula adenivorans,  and PPP2 from  Madurella mycetomatis.  Remarkably, both decarboxylases are cofactor independent and are superior to prFMN-dependent decarboxylases when heterologously expressed in Saccharomyces cerevisiae.  The organization of their active site, together with mutational studies, suggests a novel decarboxylation mechanism that combines acid–base catalysis and transition state stabilization. Both enzymes are trimers, with a central potassium binding site. In each monomer, potassium introduces a local twist in a β-sheet close to the active site, which primes the critical H86-D40 dyad for catalysis. A conserved pair of tryptophans, W35 and W61, acts like a clamp that destabilizes the substrate by twisting its carboxyl group relative to the phenol moiety. These findings reveal AGDC1 and PPP2 as founding members of a so far overlooked group of cofactor independent decarboxylases and suggest strategies to engineer their unique chemistry for a wide variety of biotechnological applications.
doi_str_mv 10.1038/s41598-021-82660-z
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_032368842d7f4b36972b7a1662d3f5a3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_032368842d7f4b36972b7a1662d3f5a3</doaj_id><sourcerecordid>2486309407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-d89b26d5d4aa7eabf06f525076f9abd14917dc0a35d5c450a442c3c8bab565413</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwCfjfyQYJjUqpVIkNrK0b25nxKGMX25npdMOr19OUoWWBN7Z8z_nutXWq6i1GHzGi7afEMO_aBhHctEQI1Ny9qE4JYrwhlJCXT84n1XlKa1QWJx3D3evqhFLOCO3kafV7Efcpw1inHCedp2hTHYbaB9-EW2cgu62tjdUQ-3C7HyGVerRbWxxQe7urN1avwLu0OdhAZxd8vXN5VcoaCnifna7NHkwN3hy7FHveuZTTm-rVAGOy54_7WfXz68WPxbfm-vvl1eLLdaO5lLkxbdcTYbhhANJCPyAxcMKRFEMHvcGsw9JoBJQbrhlHwBjRVLc99FxwhulZdTVzTYC1uoluA3GvAjj1cBHiUkEso45WIUqoaFtGjBxYT0UnSS8BC0EMHTjQwvo8s26mfmONtj6XBz2DPq94t1LLsFWyFYR0pAA-PAJi-DXZlNXGJW3HEbwNU1KEtRILRNBh7vf_SNdhir581UElKOoYkkVFZpWOIaVoh-MwGKlDXNQcF1Xioh7iou6K6d3TZxwtf8JRBHQWpFLySxv_9v4P9h6_iM3M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2486309407</pqid></control><display><type>article</type><title>Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists</title><source>Open Access: PubMed Central</source><source>Publicly Available Content (ProQuest)</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zeug, Matthias ; Markovic, Nebojsa ; Iancu, Cristina V. ; Tripp, Joanna ; Oreb, Mislav ; Choe, Jun-yong</creator><creatorcontrib>Zeug, Matthias ; Markovic, Nebojsa ; Iancu, Cristina V. ; Tripp, Joanna ; Oreb, Mislav ; Choe, Jun-yong</creatorcontrib><description>Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids’ non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases. Here, we report the crystal structures (1.5–1.9 Å) of two homologous fungal decarboxylases, AGDC1 from  Arxula adenivorans,  and PPP2 from  Madurella mycetomatis.  Remarkably, both decarboxylases are cofactor independent and are superior to prFMN-dependent decarboxylases when heterologously expressed in Saccharomyces cerevisiae.  The organization of their active site, together with mutational studies, suggests a novel decarboxylation mechanism that combines acid–base catalysis and transition state stabilization. Both enzymes are trimers, with a central potassium binding site. In each monomer, potassium introduces a local twist in a β-sheet close to the active site, which primes the critical H86-D40 dyad for catalysis. A conserved pair of tryptophans, W35 and W61, acts like a clamp that destabilizes the substrate by twisting its carboxyl group relative to the phenol moiety. These findings reveal AGDC1 and PPP2 as founding members of a so far overlooked group of cofactor independent decarboxylases and suggest strategies to engineer their unique chemistry for a wide variety of biotechnological applications.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-82660-z</identifier><identifier>PMID: 33542397</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45/173 ; 631/45/607 ; 631/535/1266 ; Acids ; Binding sites ; Biotechnology ; Catalysis ; Decarboxylation ; Gallic acid ; Humanities and Social Sciences ; multidisciplinary ; Phenols ; Potassium ; Protocatechuic acid ; Science ; Science (multidisciplinary) ; Trimers</subject><ispartof>Scientific reports, 2021-02, Vol.11 (1), p.3056-3056, Article 3056</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-d89b26d5d4aa7eabf06f525076f9abd14917dc0a35d5c450a442c3c8bab565413</citedby><cites>FETCH-LOGICAL-c577t-d89b26d5d4aa7eabf06f525076f9abd14917dc0a35d5c450a442c3c8bab565413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2486309407/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2486309407?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33542397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeug, Matthias</creatorcontrib><creatorcontrib>Markovic, Nebojsa</creatorcontrib><creatorcontrib>Iancu, Cristina V.</creatorcontrib><creatorcontrib>Tripp, Joanna</creatorcontrib><creatorcontrib>Oreb, Mislav</creatorcontrib><creatorcontrib>Choe, Jun-yong</creatorcontrib><title>Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids’ non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases. Here, we report the crystal structures (1.5–1.9 Å) of two homologous fungal decarboxylases, AGDC1 from  Arxula adenivorans,  and PPP2 from  Madurella mycetomatis.  Remarkably, both decarboxylases are cofactor independent and are superior to prFMN-dependent decarboxylases when heterologously expressed in Saccharomyces cerevisiae.  The organization of their active site, together with mutational studies, suggests a novel decarboxylation mechanism that combines acid–base catalysis and transition state stabilization. Both enzymes are trimers, with a central potassium binding site. In each monomer, potassium introduces a local twist in a β-sheet close to the active site, which primes the critical H86-D40 dyad for catalysis. A conserved pair of tryptophans, W35 and W61, acts like a clamp that destabilizes the substrate by twisting its carboxyl group relative to the phenol moiety. These findings reveal AGDC1 and PPP2 as founding members of a so far overlooked group of cofactor independent decarboxylases and suggest strategies to engineer their unique chemistry for a wide variety of biotechnological applications.</description><subject>631/45/173</subject><subject>631/45/607</subject><subject>631/535/1266</subject><subject>Acids</subject><subject>Binding sites</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Decarboxylation</subject><subject>Gallic acid</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Phenols</subject><subject>Potassium</subject><subject>Protocatechuic acid</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Trimers</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwCfjfyQYJjUqpVIkNrK0b25nxKGMX25npdMOr19OUoWWBN7Z8z_nutXWq6i1GHzGi7afEMO_aBhHctEQI1Ny9qE4JYrwhlJCXT84n1XlKa1QWJx3D3evqhFLOCO3kafV7Efcpw1inHCedp2hTHYbaB9-EW2cgu62tjdUQ-3C7HyGVerRbWxxQe7urN1avwLu0OdhAZxd8vXN5VcoaCnifna7NHkwN3hy7FHveuZTTm-rVAGOy54_7WfXz68WPxbfm-vvl1eLLdaO5lLkxbdcTYbhhANJCPyAxcMKRFEMHvcGsw9JoBJQbrhlHwBjRVLc99FxwhulZdTVzTYC1uoluA3GvAjj1cBHiUkEso45WIUqoaFtGjBxYT0UnSS8BC0EMHTjQwvo8s26mfmONtj6XBz2DPq94t1LLsFWyFYR0pAA-PAJi-DXZlNXGJW3HEbwNU1KEtRILRNBh7vf_SNdhir581UElKOoYkkVFZpWOIaVoh-MwGKlDXNQcF1Xioh7iou6K6d3TZxwtf8JRBHQWpFLySxv_9v4P9h6_iM3M</recordid><startdate>20210204</startdate><enddate>20210204</enddate><creator>Zeug, Matthias</creator><creator>Markovic, Nebojsa</creator><creator>Iancu, Cristina V.</creator><creator>Tripp, Joanna</creator><creator>Oreb, Mislav</creator><creator>Choe, Jun-yong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210204</creationdate><title>Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists</title><author>Zeug, Matthias ; Markovic, Nebojsa ; Iancu, Cristina V. ; Tripp, Joanna ; Oreb, Mislav ; Choe, Jun-yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-d89b26d5d4aa7eabf06f525076f9abd14917dc0a35d5c450a442c3c8bab565413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/45/173</topic><topic>631/45/607</topic><topic>631/535/1266</topic><topic>Acids</topic><topic>Binding sites</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Decarboxylation</topic><topic>Gallic acid</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Phenols</topic><topic>Potassium</topic><topic>Protocatechuic acid</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Trimers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeug, Matthias</creatorcontrib><creatorcontrib>Markovic, Nebojsa</creatorcontrib><creatorcontrib>Iancu, Cristina V.</creatorcontrib><creatorcontrib>Tripp, Joanna</creatorcontrib><creatorcontrib>Oreb, Mislav</creatorcontrib><creatorcontrib>Choe, Jun-yong</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Proquest Health and Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeug, Matthias</au><au>Markovic, Nebojsa</au><au>Iancu, Cristina V.</au><au>Tripp, Joanna</au><au>Oreb, Mislav</au><au>Choe, Jun-yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-02-04</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>3056</spage><epage>3056</epage><pages>3056-3056</pages><artnum>3056</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Hydroxybenzoic acids, like gallic acid and protocatechuic acid, are highly abundant natural compounds. In biotechnology, they serve as critical precursors for various molecules in heterologous production pathways, but a major bottleneck is these acids’ non-oxidative decarboxylation to hydroxybenzenes. Optimizing this step by pathway and enzyme engineering is tedious, partly because of the complicating cofactor dependencies of the commonly used prFMN-dependent decarboxylases. Here, we report the crystal structures (1.5–1.9 Å) of two homologous fungal decarboxylases, AGDC1 from  Arxula adenivorans,  and PPP2 from  Madurella mycetomatis.  Remarkably, both decarboxylases are cofactor independent and are superior to prFMN-dependent decarboxylases when heterologously expressed in Saccharomyces cerevisiae.  The organization of their active site, together with mutational studies, suggests a novel decarboxylation mechanism that combines acid–base catalysis and transition state stabilization. Both enzymes are trimers, with a central potassium binding site. In each monomer, potassium introduces a local twist in a β-sheet close to the active site, which primes the critical H86-D40 dyad for catalysis. A conserved pair of tryptophans, W35 and W61, acts like a clamp that destabilizes the substrate by twisting its carboxyl group relative to the phenol moiety. These findings reveal AGDC1 and PPP2 as founding members of a so far overlooked group of cofactor independent decarboxylases and suggest strategies to engineer their unique chemistry for a wide variety of biotechnological applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33542397</pmid><doi>10.1038/s41598-021-82660-z</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-02, Vol.11 (1), p.3056-3056, Article 3056
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_032368842d7f4b36972b7a1662d3f5a3
source Open Access: PubMed Central; Publicly Available Content (ProQuest); Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/45/173
631/45/607
631/535/1266
Acids
Binding sites
Biotechnology
Catalysis
Decarboxylation
Gallic acid
Humanities and Social Sciences
multidisciplinary
Phenols
Potassium
Protocatechuic acid
Science
Science (multidisciplinary)
Trimers
title Crystal structures of non-oxidative decarboxylases reveal a new mechanism of action with a catalytic dyad and structural twists
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A09%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20structures%20of%20non-oxidative%20decarboxylases%20reveal%20a%20new%20mechanism%20of%20action%20with%20a%20catalytic%20dyad%20and%20structural%20twists&rft.jtitle=Scientific%20reports&rft.au=Zeug,%20Matthias&rft.date=2021-02-04&rft.volume=11&rft.issue=1&rft.spage=3056&rft.epage=3056&rft.pages=3056-3056&rft.artnum=3056&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-82660-z&rft_dat=%3Cproquest_doaj_%3E2486309407%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c577t-d89b26d5d4aa7eabf06f525076f9abd14917dc0a35d5c450a442c3c8bab565413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2486309407&rft_id=info:pmid/33542397&rfr_iscdi=true