Loading…

Applications of the Photoionization Detector (PID) in Occupational Hygiene. Estimation of Air Changes per Hour in Premises with Natural Ventilation

The importance of ventilation in closed workplaces increased after the onset of the COVID-19 pandemic. New methodologies for measuring the number of air changes per hour (ACH) in a premise where natural ventilation is applied are necessary. It is demonstrated how the ionic photoionization detector (...

Full description

Saved in:
Bibliographic Details
Published in:Chemosensors 2021-12, Vol.9 (12), p.331
Main Authors: Maeso-García, María D., Esteve-Turrillas, Francesc A., Verdú-Andrés, Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-b1010b8356f934e9fb90054500a4df5c7b6114a857618f3d3f7d0114cb3d9fc03
cites cdi_FETCH-LOGICAL-c388t-b1010b8356f934e9fb90054500a4df5c7b6114a857618f3d3f7d0114cb3d9fc03
container_end_page
container_issue 12
container_start_page 331
container_title Chemosensors
container_volume 9
creator Maeso-García, María D.
Esteve-Turrillas, Francesc A.
Verdú-Andrés, Jorge
description The importance of ventilation in closed workplaces increased after the onset of the COVID-19 pandemic. New methodologies for measuring the number of air changes per hour (ACH) in a premise where natural ventilation is applied are necessary. It is demonstrated how the ionic photoionization detector (PID) can be employed for tracer gas decay methodology using a volatile organic solvent (acetone). The methodology applied to calculate ACH in a naturally ventilated room, with various combinations of door and window openings, provides ACH values of between 2 and 17 h−1. Two classrooms were studied to verify if the minimum ventilation requirements recommended by official guidelines were met. The values for ACH on different days varied, mainly between 15 and 35 h−1, with some exceptional values higher than 40 h−1 on very windy days. These results agree with the quality air data recorded by the installed CO2 sensors, ensuring adequate hygienic conditions for the users of the rooms. The fast response of the PID allows the measurement of different locations in the room during the same assay, which provides additional information regarding the air distribution inside during the ventilation process. This methodology is fast and easy, and the necessary equipment is simple to obtain and use routinely, whether it is needed to measure several rooms or to monitor one room periodically.
doi_str_mv 10.3390/chemosensors9120331
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_032e60fd02694fb183963ede2ecdad78</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_032e60fd02694fb183963ede2ecdad78</doaj_id><sourcerecordid>2612759273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-b1010b8356f934e9fb90054500a4df5c7b6114a857618f3d3f7d0114cb3d9fc03</originalsourceid><addsrcrecordid>eNptkctuEzEUhkcIJKrSJ2BjiQ0sUo595uZllBYSqWqzALaWx3OccTQZD7ajqrwGL4ybINQF3tj6fP7Pl1MU7zlcI0r4bAY6-EhT9CFKLgCRvyouhBDNQkIJr1-s3xZXMe4hD8mx5fVF8Xs5z6MzOjk_ReYtSwOx7eCTz8D9OnF2Q4lM8oF93G5uPjE3sQdjjvNpU49s_bRzNNE1u43JHc6RbFq6wFaDnnYU2UyBrf0xPGe3gQ4uZvjo0sDudTqGLPlBU3LjKfyueGP1GOnq73xZfP9y-221Xtw9fN2slncLg22bFh0HDl2LVW0lliRtJwGqsgLQZW8r03Q156Vuq6bmrcUebdNDJqbDXloDeFlszt7e672aQ757eFJeO3UCPuyUDsmZkRSgoBpsD6KWpe14i7JG6kmQ6XXftNn14eyag_95pJjUPj83_05UouaiqaRoMFfhucoEH2Mg--9UDuq5meo_zcQ_EWqWzA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612759273</pqid></control><display><type>article</type><title>Applications of the Photoionization Detector (PID) in Occupational Hygiene. Estimation of Air Changes per Hour in Premises with Natural Ventilation</title><source>Publicly Available Content (ProQuest)</source><source>Coronavirus Research Database</source><creator>Maeso-García, María D. ; Esteve-Turrillas, Francesc A. ; Verdú-Andrés, Jorge</creator><creatorcontrib>Maeso-García, María D. ; Esteve-Turrillas, Francesc A. ; Verdú-Andrés, Jorge</creatorcontrib><description>The importance of ventilation in closed workplaces increased after the onset of the COVID-19 pandemic. New methodologies for measuring the number of air changes per hour (ACH) in a premise where natural ventilation is applied are necessary. It is demonstrated how the ionic photoionization detector (PID) can be employed for tracer gas decay methodology using a volatile organic solvent (acetone). The methodology applied to calculate ACH in a naturally ventilated room, with various combinations of door and window openings, provides ACH values of between 2 and 17 h−1. Two classrooms were studied to verify if the minimum ventilation requirements recommended by official guidelines were met. The values for ACH on different days varied, mainly between 15 and 35 h−1, with some exceptional values higher than 40 h−1 on very windy days. These results agree with the quality air data recorded by the installed CO2 sensors, ensuring adequate hygienic conditions for the users of the rooms. The fast response of the PID allows the measurement of different locations in the room during the same assay, which provides additional information regarding the air distribution inside during the ventilation process. This methodology is fast and easy, and the necessary equipment is simple to obtain and use routinely, whether it is needed to measure several rooms or to monitor one room periodically.</description><identifier>ISSN: 2227-9040</identifier><identifier>EISSN: 2227-9040</identifier><identifier>DOI: 10.3390/chemosensors9120331</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Aerosols ; Air pollution ; Carbon dioxide ; Classrooms ; Coronaviruses ; COVID-19 ; Disease transmission ; Gases ; Hygiene ; Indoor air quality ; industrial hygiene ; Measurement techniques ; Methodology ; natural ventilation ; Pandemics ; Photoionization ; photoionization detector ; Sensors ; Severe acute respiratory syndrome coronavirus 2 ; Tracer gas ; Ventilation ; ventilation rate ; VOCs ; Volatile organic compounds ; Workplaces</subject><ispartof>Chemosensors, 2021-12, Vol.9 (12), p.331</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-b1010b8356f934e9fb90054500a4df5c7b6114a857618f3d3f7d0114cb3d9fc03</citedby><cites>FETCH-LOGICAL-c388t-b1010b8356f934e9fb90054500a4df5c7b6114a857618f3d3f7d0114cb3d9fc03</cites><orcidid>0000-0002-7261-4488 ; 0000-0002-6886-1339 ; 0000-0003-1543-1877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612759273/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612759273?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,38493,43871,44566,74155,74869</link.rule.ids></links><search><creatorcontrib>Maeso-García, María D.</creatorcontrib><creatorcontrib>Esteve-Turrillas, Francesc A.</creatorcontrib><creatorcontrib>Verdú-Andrés, Jorge</creatorcontrib><title>Applications of the Photoionization Detector (PID) in Occupational Hygiene. Estimation of Air Changes per Hour in Premises with Natural Ventilation</title><title>Chemosensors</title><description>The importance of ventilation in closed workplaces increased after the onset of the COVID-19 pandemic. New methodologies for measuring the number of air changes per hour (ACH) in a premise where natural ventilation is applied are necessary. It is demonstrated how the ionic photoionization detector (PID) can be employed for tracer gas decay methodology using a volatile organic solvent (acetone). The methodology applied to calculate ACH in a naturally ventilated room, with various combinations of door and window openings, provides ACH values of between 2 and 17 h−1. Two classrooms were studied to verify if the minimum ventilation requirements recommended by official guidelines were met. The values for ACH on different days varied, mainly between 15 and 35 h−1, with some exceptional values higher than 40 h−1 on very windy days. These results agree with the quality air data recorded by the installed CO2 sensors, ensuring adequate hygienic conditions for the users of the rooms. The fast response of the PID allows the measurement of different locations in the room during the same assay, which provides additional information regarding the air distribution inside during the ventilation process. This methodology is fast and easy, and the necessary equipment is simple to obtain and use routinely, whether it is needed to measure several rooms or to monitor one room periodically.</description><subject>Aerosols</subject><subject>Air pollution</subject><subject>Carbon dioxide</subject><subject>Classrooms</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Disease transmission</subject><subject>Gases</subject><subject>Hygiene</subject><subject>Indoor air quality</subject><subject>industrial hygiene</subject><subject>Measurement techniques</subject><subject>Methodology</subject><subject>natural ventilation</subject><subject>Pandemics</subject><subject>Photoionization</subject><subject>photoionization detector</subject><subject>Sensors</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Tracer gas</subject><subject>Ventilation</subject><subject>ventilation rate</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Workplaces</subject><issn>2227-9040</issn><issn>2227-9040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkctuEzEUhkcIJKrSJ2BjiQ0sUo595uZllBYSqWqzALaWx3OccTQZD7ajqrwGL4ybINQF3tj6fP7Pl1MU7zlcI0r4bAY6-EhT9CFKLgCRvyouhBDNQkIJr1-s3xZXMe4hD8mx5fVF8Xs5z6MzOjk_ReYtSwOx7eCTz8D9OnF2Q4lM8oF93G5uPjE3sQdjjvNpU49s_bRzNNE1u43JHc6RbFq6wFaDnnYU2UyBrf0xPGe3gQ4uZvjo0sDudTqGLPlBU3LjKfyueGP1GOnq73xZfP9y-221Xtw9fN2slncLg22bFh0HDl2LVW0lliRtJwGqsgLQZW8r03Q156Vuq6bmrcUebdNDJqbDXloDeFlszt7e672aQ757eFJeO3UCPuyUDsmZkRSgoBpsD6KWpe14i7JG6kmQ6XXftNn14eyag_95pJjUPj83_05UouaiqaRoMFfhucoEH2Mg--9UDuq5meo_zcQ_EWqWzA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Maeso-García, María D.</creator><creator>Esteve-Turrillas, Francesc A.</creator><creator>Verdú-Andrés, Jorge</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7261-4488</orcidid><orcidid>https://orcid.org/0000-0002-6886-1339</orcidid><orcidid>https://orcid.org/0000-0003-1543-1877</orcidid></search><sort><creationdate>20211201</creationdate><title>Applications of the Photoionization Detector (PID) in Occupational Hygiene. Estimation of Air Changes per Hour in Premises with Natural Ventilation</title><author>Maeso-García, María D. ; Esteve-Turrillas, Francesc A. ; Verdú-Andrés, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-b1010b8356f934e9fb90054500a4df5c7b6114a857618f3d3f7d0114cb3d9fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerosols</topic><topic>Air pollution</topic><topic>Carbon dioxide</topic><topic>Classrooms</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Disease transmission</topic><topic>Gases</topic><topic>Hygiene</topic><topic>Indoor air quality</topic><topic>industrial hygiene</topic><topic>Measurement techniques</topic><topic>Methodology</topic><topic>natural ventilation</topic><topic>Pandemics</topic><topic>Photoionization</topic><topic>photoionization detector</topic><topic>Sensors</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Tracer gas</topic><topic>Ventilation</topic><topic>ventilation rate</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Workplaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maeso-García, María D.</creatorcontrib><creatorcontrib>Esteve-Turrillas, Francesc A.</creatorcontrib><creatorcontrib>Verdú-Andrés, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Chemosensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maeso-García, María D.</au><au>Esteve-Turrillas, Francesc A.</au><au>Verdú-Andrés, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applications of the Photoionization Detector (PID) in Occupational Hygiene. Estimation of Air Changes per Hour in Premises with Natural Ventilation</atitle><jtitle>Chemosensors</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>9</volume><issue>12</issue><spage>331</spage><pages>331-</pages><issn>2227-9040</issn><eissn>2227-9040</eissn><abstract>The importance of ventilation in closed workplaces increased after the onset of the COVID-19 pandemic. New methodologies for measuring the number of air changes per hour (ACH) in a premise where natural ventilation is applied are necessary. It is demonstrated how the ionic photoionization detector (PID) can be employed for tracer gas decay methodology using a volatile organic solvent (acetone). The methodology applied to calculate ACH in a naturally ventilated room, with various combinations of door and window openings, provides ACH values of between 2 and 17 h−1. Two classrooms were studied to verify if the minimum ventilation requirements recommended by official guidelines were met. The values for ACH on different days varied, mainly between 15 and 35 h−1, with some exceptional values higher than 40 h−1 on very windy days. These results agree with the quality air data recorded by the installed CO2 sensors, ensuring adequate hygienic conditions for the users of the rooms. The fast response of the PID allows the measurement of different locations in the room during the same assay, which provides additional information regarding the air distribution inside during the ventilation process. This methodology is fast and easy, and the necessary equipment is simple to obtain and use routinely, whether it is needed to measure several rooms or to monitor one room periodically.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/chemosensors9120331</doi><orcidid>https://orcid.org/0000-0002-7261-4488</orcidid><orcidid>https://orcid.org/0000-0002-6886-1339</orcidid><orcidid>https://orcid.org/0000-0003-1543-1877</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9040
ispartof Chemosensors, 2021-12, Vol.9 (12), p.331
issn 2227-9040
2227-9040
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_032e60fd02694fb183963ede2ecdad78
source Publicly Available Content (ProQuest); Coronavirus Research Database
subjects Aerosols
Air pollution
Carbon dioxide
Classrooms
Coronaviruses
COVID-19
Disease transmission
Gases
Hygiene
Indoor air quality
industrial hygiene
Measurement techniques
Methodology
natural ventilation
Pandemics
Photoionization
photoionization detector
Sensors
Severe acute respiratory syndrome coronavirus 2
Tracer gas
Ventilation
ventilation rate
VOCs
Volatile organic compounds
Workplaces
title Applications of the Photoionization Detector (PID) in Occupational Hygiene. Estimation of Air Changes per Hour in Premises with Natural Ventilation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A05%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applications%20of%20the%20Photoionization%20Detector%20(PID)%20in%20Occupational%20Hygiene.%20Estimation%20of%20Air%20Changes%20per%20Hour%20in%20Premises%20with%20Natural%20Ventilation&rft.jtitle=Chemosensors&rft.au=Maeso-Garc%C3%ADa,%20Mar%C3%ADa%20D.&rft.date=2021-12-01&rft.volume=9&rft.issue=12&rft.spage=331&rft.pages=331-&rft.issn=2227-9040&rft.eissn=2227-9040&rft_id=info:doi/10.3390/chemosensors9120331&rft_dat=%3Cproquest_doaj_%3E2612759273%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-b1010b8356f934e9fb90054500a4df5c7b6114a857618f3d3f7d0114cb3d9fc03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612759273&rft_id=info:pmid/&rfr_iscdi=true