Loading…

Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial

New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investiga...

Full description

Saved in:
Bibliographic Details
Published in:Crystals (Basel) 2019-03, Vol.9 (3), p.146
Main Authors: Wang, Guanqi, Zhang, Xianbin, Zhang, Lei, Wei, Xuyan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43
cites cdi_FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43
container_end_page
container_issue 3
container_start_page 146
container_title Crystals (Basel)
container_volume 9
creator Wang, Guanqi
Zhang, Xianbin
Zhang, Lei
Wei, Xuyan
description New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investigated in this paper. For the active manipulation of the PIT device, the single-layer graphene is integrated into the proposed structure consisting of the split-ring-resonator (SRR) and the closed-ring-resonator (CRR). Dynamically adjusting Fermi energy in graphene leads to modulation of the PIT window, allowing for the active control of the group delay. From the simulated electrical field distributions and effective circuit model to analyze, the transmission spectrum modulation can be attributed to the altering in the energy loss of the dark mode resonator through the conduction effect of the graphene layer. Our work offers theoretical references for the development of slow light terahertz devices in the future.
doi_str_mv 10.3390/cryst9030146
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_033882c4b6cf4d65973e17bcadd9ee84</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_033882c4b6cf4d65973e17bcadd9ee84</doaj_id><sourcerecordid>2535248887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43</originalsourceid><addsrcrecordid>eNpNUU1P3DAUjCoqFQG3_gBLvTbUib-SY9m2dCUQFVrO1ov9Al557WAnlcKJS39B_2F_SQOLEO_yRqPRvNGbovhY0VPGWvrFpDmPLWW04vJdcVhTxUrORH3wBn8oTnLe0mWUpEpVh8Wfb3OAnTPg_Uw2U4DOI_nlIe9iKNfBTgYt2SQIeYCEwczkDPJCxUCuwToY3W_89_j3FZerOA3ehVviAgGywQR3mMYHcokj-EV5nmC4w4DPxA5GTA78cfG-B5_x5GUfFTc_vm9WP8uLq_P16utFaZhUY9kaNJTKqq-tAGNAtkoYARRUR7taSqkUk7wRnHMUtu_qnvVguG1Fw0Eazo6K9d7XRtjqIbkdpFlHcPqZiOlWQxqd8agpY01TG95J03MrRasYVqozYG2L2Dx5fdp7DSneT5hHvY1TCkt8XYvl17xpGrWoPu9VJsWcE_avVyuqn3rTb3tj_wEPhI-u</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535248887</pqid></control><display><type>article</type><title>Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial</title><source>Access via ProQuest (Open Access)</source><creator>Wang, Guanqi ; Zhang, Xianbin ; Zhang, Lei ; Wei, Xuyan</creator><creatorcontrib>Wang, Guanqi ; Zhang, Xianbin ; Zhang, Lei ; Wei, Xuyan</creatorcontrib><description>New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investigated in this paper. For the active manipulation of the PIT device, the single-layer graphene is integrated into the proposed structure consisting of the split-ring-resonator (SRR) and the closed-ring-resonator (CRR). Dynamically adjusting Fermi energy in graphene leads to modulation of the PIT window, allowing for the active control of the group delay. From the simulated electrical field distributions and effective circuit model to analyze, the transmission spectrum modulation can be attributed to the altering in the energy loss of the dark mode resonator through the conduction effect of the graphene layer. Our work offers theoretical references for the development of slow light terahertz devices in the future.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst9030146</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Active control ; Circuits ; Coupling ; Electric fields ; Energy ; Energy dissipation ; Graphene ; Group delay ; Information storage ; metamaterial ; Metamaterials ; Modulation ; New technology ; Optical properties ; plasmon-induced transparency ; Resonators ; terahertz</subject><ispartof>Crystals (Basel), 2019-03, Vol.9 (3), p.146</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43</citedby><cites>FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43</cites><orcidid>0000-0002-5600-3150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535248887/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535248887?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wang, Guanqi</creatorcontrib><creatorcontrib>Zhang, Xianbin</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wei, Xuyan</creatorcontrib><title>Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial</title><title>Crystals (Basel)</title><description>New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investigated in this paper. For the active manipulation of the PIT device, the single-layer graphene is integrated into the proposed structure consisting of the split-ring-resonator (SRR) and the closed-ring-resonator (CRR). Dynamically adjusting Fermi energy in graphene leads to modulation of the PIT window, allowing for the active control of the group delay. From the simulated electrical field distributions and effective circuit model to analyze, the transmission spectrum modulation can be attributed to the altering in the energy loss of the dark mode resonator through the conduction effect of the graphene layer. Our work offers theoretical references for the development of slow light terahertz devices in the future.</description><subject>Active control</subject><subject>Circuits</subject><subject>Coupling</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Energy dissipation</subject><subject>Graphene</subject><subject>Group delay</subject><subject>Information storage</subject><subject>metamaterial</subject><subject>Metamaterials</subject><subject>Modulation</subject><subject>New technology</subject><subject>Optical properties</subject><subject>plasmon-induced transparency</subject><subject>Resonators</subject><subject>terahertz</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAUjCoqFQG3_gBLvTbUib-SY9m2dCUQFVrO1ov9Al557WAnlcKJS39B_2F_SQOLEO_yRqPRvNGbovhY0VPGWvrFpDmPLWW04vJdcVhTxUrORH3wBn8oTnLe0mWUpEpVh8Wfb3OAnTPg_Uw2U4DOI_nlIe9iKNfBTgYt2SQIeYCEwczkDPJCxUCuwToY3W_89_j3FZerOA3ehVviAgGywQR3mMYHcokj-EV5nmC4w4DPxA5GTA78cfG-B5_x5GUfFTc_vm9WP8uLq_P16utFaZhUY9kaNJTKqq-tAGNAtkoYARRUR7taSqkUk7wRnHMUtu_qnvVguG1Fw0Eazo6K9d7XRtjqIbkdpFlHcPqZiOlWQxqd8agpY01TG95J03MrRasYVqozYG2L2Dx5fdp7DSneT5hHvY1TCkt8XYvl17xpGrWoPu9VJsWcE_avVyuqn3rTb3tj_wEPhI-u</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Wang, Guanqi</creator><creator>Zhang, Xianbin</creator><creator>Zhang, Lei</creator><creator>Wei, Xuyan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5600-3150</orcidid></search><sort><creationdate>20190313</creationdate><title>Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial</title><author>Wang, Guanqi ; Zhang, Xianbin ; Zhang, Lei ; Wei, Xuyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active control</topic><topic>Circuits</topic><topic>Coupling</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Energy dissipation</topic><topic>Graphene</topic><topic>Group delay</topic><topic>Information storage</topic><topic>metamaterial</topic><topic>Metamaterials</topic><topic>Modulation</topic><topic>New technology</topic><topic>Optical properties</topic><topic>plasmon-induced transparency</topic><topic>Resonators</topic><topic>terahertz</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guanqi</creatorcontrib><creatorcontrib>Zhang, Xianbin</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wei, Xuyan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guanqi</au><au>Zhang, Xianbin</au><au>Zhang, Lei</au><au>Wei, Xuyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial</atitle><jtitle>Crystals (Basel)</jtitle><date>2019-03-13</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>146</spage><pages>146-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investigated in this paper. For the active manipulation of the PIT device, the single-layer graphene is integrated into the proposed structure consisting of the split-ring-resonator (SRR) and the closed-ring-resonator (CRR). Dynamically adjusting Fermi energy in graphene leads to modulation of the PIT window, allowing for the active control of the group delay. From the simulated electrical field distributions and effective circuit model to analyze, the transmission spectrum modulation can be attributed to the altering in the energy loss of the dark mode resonator through the conduction effect of the graphene layer. Our work offers theoretical references for the development of slow light terahertz devices in the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst9030146</doi><orcidid>https://orcid.org/0000-0002-5600-3150</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2019-03, Vol.9 (3), p.146
issn 2073-4352
2073-4352
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_033882c4b6cf4d65973e17bcadd9ee84
source Access via ProQuest (Open Access)
subjects Active control
Circuits
Coupling
Electric fields
Energy
Energy dissipation
Graphene
Group delay
Information storage
metamaterial
Metamaterials
Modulation
New technology
Optical properties
plasmon-induced transparency
Resonators
terahertz
title Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamically%20Tunable%20Plasmon-Induced%20Transparency%20Based%20on%20Radiative%E2%80%93Radiative-Coupling%20in%20a%20Terahertz%20Metal%E2%80%93Graphene%20Metamaterial&rft.jtitle=Crystals%20(Basel)&rft.au=Wang,%20Guanqi&rft.date=2019-03-13&rft.volume=9&rft.issue=3&rft.spage=146&rft.pages=146-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst9030146&rft_dat=%3Cproquest_doaj_%3E2535248887%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535248887&rft_id=info:pmid/&rfr_iscdi=true