Loading…
Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial
New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investiga...
Saved in:
Published in: | Crystals (Basel) 2019-03, Vol.9 (3), p.146 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43 |
container_end_page | |
container_issue | 3 |
container_start_page | 146 |
container_title | Crystals (Basel) |
container_volume | 9 |
creator | Wang, Guanqi Zhang, Xianbin Zhang, Lei Wei, Xuyan |
description | New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investigated in this paper. For the active manipulation of the PIT device, the single-layer graphene is integrated into the proposed structure consisting of the split-ring-resonator (SRR) and the closed-ring-resonator (CRR). Dynamically adjusting Fermi energy in graphene leads to modulation of the PIT window, allowing for the active control of the group delay. From the simulated electrical field distributions and effective circuit model to analyze, the transmission spectrum modulation can be attributed to the altering in the energy loss of the dark mode resonator through the conduction effect of the graphene layer. Our work offers theoretical references for the development of slow light terahertz devices in the future. |
doi_str_mv | 10.3390/cryst9030146 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_033882c4b6cf4d65973e17bcadd9ee84</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_033882c4b6cf4d65973e17bcadd9ee84</doaj_id><sourcerecordid>2535248887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43</originalsourceid><addsrcrecordid>eNpNUU1P3DAUjCoqFQG3_gBLvTbUib-SY9m2dCUQFVrO1ov9Al557WAnlcKJS39B_2F_SQOLEO_yRqPRvNGbovhY0VPGWvrFpDmPLWW04vJdcVhTxUrORH3wBn8oTnLe0mWUpEpVh8Wfb3OAnTPg_Uw2U4DOI_nlIe9iKNfBTgYt2SQIeYCEwczkDPJCxUCuwToY3W_89_j3FZerOA3ehVviAgGywQR3mMYHcokj-EV5nmC4w4DPxA5GTA78cfG-B5_x5GUfFTc_vm9WP8uLq_P16utFaZhUY9kaNJTKqq-tAGNAtkoYARRUR7taSqkUk7wRnHMUtu_qnvVguG1Fw0Eazo6K9d7XRtjqIbkdpFlHcPqZiOlWQxqd8agpY01TG95J03MrRasYVqozYG2L2Dx5fdp7DSneT5hHvY1TCkt8XYvl17xpGrWoPu9VJsWcE_avVyuqn3rTb3tj_wEPhI-u</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535248887</pqid></control><display><type>article</type><title>Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial</title><source>Access via ProQuest (Open Access)</source><creator>Wang, Guanqi ; Zhang, Xianbin ; Zhang, Lei ; Wei, Xuyan</creator><creatorcontrib>Wang, Guanqi ; Zhang, Xianbin ; Zhang, Lei ; Wei, Xuyan</creatorcontrib><description>New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investigated in this paper. For the active manipulation of the PIT device, the single-layer graphene is integrated into the proposed structure consisting of the split-ring-resonator (SRR) and the closed-ring-resonator (CRR). Dynamically adjusting Fermi energy in graphene leads to modulation of the PIT window, allowing for the active control of the group delay. From the simulated electrical field distributions and effective circuit model to analyze, the transmission spectrum modulation can be attributed to the altering in the energy loss of the dark mode resonator through the conduction effect of the graphene layer. Our work offers theoretical references for the development of slow light terahertz devices in the future.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst9030146</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Active control ; Circuits ; Coupling ; Electric fields ; Energy ; Energy dissipation ; Graphene ; Group delay ; Information storage ; metamaterial ; Metamaterials ; Modulation ; New technology ; Optical properties ; plasmon-induced transparency ; Resonators ; terahertz</subject><ispartof>Crystals (Basel), 2019-03, Vol.9 (3), p.146</ispartof><rights>2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43</citedby><cites>FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43</cites><orcidid>0000-0002-5600-3150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2535248887/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2535248887?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wang, Guanqi</creatorcontrib><creatorcontrib>Zhang, Xianbin</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wei, Xuyan</creatorcontrib><title>Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial</title><title>Crystals (Basel)</title><description>New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investigated in this paper. For the active manipulation of the PIT device, the single-layer graphene is integrated into the proposed structure consisting of the split-ring-resonator (SRR) and the closed-ring-resonator (CRR). Dynamically adjusting Fermi energy in graphene leads to modulation of the PIT window, allowing for the active control of the group delay. From the simulated electrical field distributions and effective circuit model to analyze, the transmission spectrum modulation can be attributed to the altering in the energy loss of the dark mode resonator through the conduction effect of the graphene layer. Our work offers theoretical references for the development of slow light terahertz devices in the future.</description><subject>Active control</subject><subject>Circuits</subject><subject>Coupling</subject><subject>Electric fields</subject><subject>Energy</subject><subject>Energy dissipation</subject><subject>Graphene</subject><subject>Group delay</subject><subject>Information storage</subject><subject>metamaterial</subject><subject>Metamaterials</subject><subject>Modulation</subject><subject>New technology</subject><subject>Optical properties</subject><subject>plasmon-induced transparency</subject><subject>Resonators</subject><subject>terahertz</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P3DAUjCoqFQG3_gBLvTbUib-SY9m2dCUQFVrO1ov9Al557WAnlcKJS39B_2F_SQOLEO_yRqPRvNGbovhY0VPGWvrFpDmPLWW04vJdcVhTxUrORH3wBn8oTnLe0mWUpEpVh8Wfb3OAnTPg_Uw2U4DOI_nlIe9iKNfBTgYt2SQIeYCEwczkDPJCxUCuwToY3W_89_j3FZerOA3ehVviAgGywQR3mMYHcokj-EV5nmC4w4DPxA5GTA78cfG-B5_x5GUfFTc_vm9WP8uLq_P16utFaZhUY9kaNJTKqq-tAGNAtkoYARRUR7taSqkUk7wRnHMUtu_qnvVguG1Fw0Eazo6K9d7XRtjqIbkdpFlHcPqZiOlWQxqd8agpY01TG95J03MrRasYVqozYG2L2Dx5fdp7DSneT5hHvY1TCkt8XYvl17xpGrWoPu9VJsWcE_avVyuqn3rTb3tj_wEPhI-u</recordid><startdate>20190313</startdate><enddate>20190313</enddate><creator>Wang, Guanqi</creator><creator>Zhang, Xianbin</creator><creator>Zhang, Lei</creator><creator>Wei, Xuyan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5600-3150</orcidid></search><sort><creationdate>20190313</creationdate><title>Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial</title><author>Wang, Guanqi ; Zhang, Xianbin ; Zhang, Lei ; Wei, Xuyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active control</topic><topic>Circuits</topic><topic>Coupling</topic><topic>Electric fields</topic><topic>Energy</topic><topic>Energy dissipation</topic><topic>Graphene</topic><topic>Group delay</topic><topic>Information storage</topic><topic>metamaterial</topic><topic>Metamaterials</topic><topic>Modulation</topic><topic>New technology</topic><topic>Optical properties</topic><topic>plasmon-induced transparency</topic><topic>Resonators</topic><topic>terahertz</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guanqi</creatorcontrib><creatorcontrib>Zhang, Xianbin</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Wei, Xuyan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guanqi</au><au>Zhang, Xianbin</au><au>Zhang, Lei</au><au>Wei, Xuyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial</atitle><jtitle>Crystals (Basel)</jtitle><date>2019-03-13</date><risdate>2019</risdate><volume>9</volume><issue>3</issue><spage>146</spage><pages>146-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>New technologies and materials with superior characteristics impel great development of functional devices in the terahertz field. The dynamically tunable plasmon-induced transparency (PIT) based on radiative–radiative-coupling in terahertz hybrid metal–graphene metamaterial is numerically investigated in this paper. For the active manipulation of the PIT device, the single-layer graphene is integrated into the proposed structure consisting of the split-ring-resonator (SRR) and the closed-ring-resonator (CRR). Dynamically adjusting Fermi energy in graphene leads to modulation of the PIT window, allowing for the active control of the group delay. From the simulated electrical field distributions and effective circuit model to analyze, the transmission spectrum modulation can be attributed to the altering in the energy loss of the dark mode resonator through the conduction effect of the graphene layer. Our work offers theoretical references for the development of slow light terahertz devices in the future.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst9030146</doi><orcidid>https://orcid.org/0000-0002-5600-3150</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4352 |
ispartof | Crystals (Basel), 2019-03, Vol.9 (3), p.146 |
issn | 2073-4352 2073-4352 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_033882c4b6cf4d65973e17bcadd9ee84 |
source | Access via ProQuest (Open Access) |
subjects | Active control Circuits Coupling Electric fields Energy Energy dissipation Graphene Group delay Information storage metamaterial Metamaterials Modulation New technology Optical properties plasmon-induced transparency Resonators terahertz |
title | Dynamically Tunable Plasmon-Induced Transparency Based on Radiative–Radiative-Coupling in a Terahertz Metal–Graphene Metamaterial |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamically%20Tunable%20Plasmon-Induced%20Transparency%20Based%20on%20Radiative%E2%80%93Radiative-Coupling%20in%20a%20Terahertz%20Metal%E2%80%93Graphene%20Metamaterial&rft.jtitle=Crystals%20(Basel)&rft.au=Wang,%20Guanqi&rft.date=2019-03-13&rft.volume=9&rft.issue=3&rft.spage=146&rft.pages=146-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst9030146&rft_dat=%3Cproquest_doaj_%3E2535248887%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-9cec0061f2d5acca6975c5a0a7b0b26667736485444e5dfb2f3fac4d9584a6c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2535248887&rft_id=info:pmid/&rfr_iscdi=true |