Loading…
Microwave and Cs+-assisted chemo selective reaction protocol for synthesizing 2-styryl quinoline biorelevant molecules
The reaction protocols and their continuous development to achieve the desired selectivity remain a primary target of organic chemistry, which is addressed here with the specific role of the cesium ion. The pharmacophore “2-styryl quinoline” was taken as a reference here because of the continuation...
Saved in:
Published in: | Open Chemistry 2023-03, Vol.21 (1), p.859-70 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reaction protocols and their continuous development to achieve the desired selectivity remain a primary target of organic chemistry, which is addressed here with the specific role of the cesium ion. The pharmacophore “2-styryl quinoline” was taken as a reference here because of the continuation of our work, where it was found fit as fusion inhibitors and anti-viral agents. The present protocol defines its importance for the synthesis of
-alkylated products. However, in most cases,
-alkylation proceeds because of nitrogen atoms’ more nucleophilic nature and electronic density. The cesium effect makes this possible because of the large cationic size and its affection for the oxygen atom. The plausible mechanism and its progression were demonstrated here with the help of density function theory calculation by analyzing the energy of intermediates. The protocol is also found suitable with microwave irradiation. Moreover, it gives the product a better yield in less reaction time. The present reaction protocol and its importance will address some of the crucial issues related to the synthesis of the complex molecule, and the present protocol will open up hope, where the selectivity and product yield would be a concern. |
---|---|
ISSN: | 2391-5420 2391-5420 |
DOI: | 10.1515/chem-2022-0250 |