Loading…

Damage Detection of Structures for Ambient Loading Based on Cross Correlation Function Amplitude and SVM

An effective method for the damage detection of skeletal structures which combines the cross correlation function amplitude (CCFA) with the support vector machine (SVM) is presented in this paper. The proposed method consists of two stages. Firstly, the data features are extracted from the CCFA, whi...

Full description

Saved in:
Bibliographic Details
Published in:Shock and vibration 2016-01, Vol.2016 (2016), p.1-12
Main Authors: Li, Hong-Nan, Yang, Yeong-Bin, Li, Xu, Huo, Linsheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c546t-767230771110001ace9a054612e66dc62054a3fa53e2b9adb44541cd846b3d273
cites cdi_FETCH-LOGICAL-c546t-767230771110001ace9a054612e66dc62054a3fa53e2b9adb44541cd846b3d273
container_end_page 12
container_issue 2016
container_start_page 1
container_title Shock and vibration
container_volume 2016
creator Li, Hong-Nan
Yang, Yeong-Bin
Li, Xu
Huo, Linsheng
description An effective method for the damage detection of skeletal structures which combines the cross correlation function amplitude (CCFA) with the support vector machine (SVM) is presented in this paper. The proposed method consists of two stages. Firstly, the data features are extracted from the CCFA, which, calculated from dynamic responses and as a representation of the modal shapes of the structure, changes when damage occurs on the structure. The data features are then input into the SVM with the one-against-one (OAO) algorithm to classify the damage status of the structure. The simulation data of IASC-ASCE benchmark model and a vibration experiment of truss structure are adopted to verify the feasibility of proposed method. The results show that the proposed method is suitable for the damage identification of skeletal structures with the limited sensors subjected to ambient excitation. As the CCFA based data features are sensitive to damage, the proposed method demonstrates its reliability in the diagnosis of structures with damage, especially for those with minor damage. In addition, the proposed method shows better noise robustness and is more suitable for noisy environments.
doi_str_mv 10.1155/2016/3989743
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0356e5d29c854def8a0b2c64cf59dd23</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513641806</galeid><doaj_id>oai_doaj_org_article_0356e5d29c854def8a0b2c64cf59dd23</doaj_id><sourcerecordid>A513641806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-767230771110001ace9a054612e66dc62054a3fa53e2b9adb44541cd846b3d273</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEqVw44wscUGCtP6I7fi4bClUWsShwNWa2JOtV0m8OI4Q_x5vU4HEBfkw9viZ1zN-q-oloxeMSXnJKVOXwrRGN-JRdcZaLWvDqXhc9lTT2ijOn1bP5vlAKZVCNWfV3RWMsEdyhRldDnEisSe3OS0uLwln0sdENmMXcMpkF8GHaU_ew4yeFHSb4jyTbUwJB7gvvl6mVWUzHoeQF48EJk9uv39-Xj3pYZjxxUM8r75df_i6_VTvvny82W52tZONyrVWmguqNWOs9MjAoQFabhhHpbxTvBxA9CAF8s6A75pGNsz5tlGd8FyL8-pm1fURDvaYwgjpl40Q7H0ipr2FlIMb0FIhFUrPjWtl47FvgXbcqcb10njPRdF6s2odU_yx4JztGGaHwwATxmW2rJVSaKG5Kujrf9BDXNJUJrVMa21Y0xpZqIuV2kN5P0x9zAlcWR7H4OKEfSj5jWTFG9bSk-y7tcCdvjph_2ciRu3Jc3vy3D54XvC3K34XJg8_w__oVyuNhcEe_tKMGdoa8RuBzrKR</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777914895</pqid></control><display><type>article</type><title>Damage Detection of Structures for Ambient Loading Based on Cross Correlation Function Amplitude and SVM</title><source>Publicly Available Content (ProQuest)</source><source>Wiley Open Access</source><creator>Li, Hong-Nan ; Yang, Yeong-Bin ; Li, Xu ; Huo, Linsheng</creator><contributor>Shafieezadeh, Abdollah</contributor><creatorcontrib>Li, Hong-Nan ; Yang, Yeong-Bin ; Li, Xu ; Huo, Linsheng ; Shafieezadeh, Abdollah</creatorcontrib><description>An effective method for the damage detection of skeletal structures which combines the cross correlation function amplitude (CCFA) with the support vector machine (SVM) is presented in this paper. The proposed method consists of two stages. Firstly, the data features are extracted from the CCFA, which, calculated from dynamic responses and as a representation of the modal shapes of the structure, changes when damage occurs on the structure. The data features are then input into the SVM with the one-against-one (OAO) algorithm to classify the damage status of the structure. The simulation data of IASC-ASCE benchmark model and a vibration experiment of truss structure are adopted to verify the feasibility of proposed method. The results show that the proposed method is suitable for the damage identification of skeletal structures with the limited sensors subjected to ambient excitation. As the CCFA based data features are sensitive to damage, the proposed method demonstrates its reliability in the diagnosis of structures with damage, especially for those with minor damage. In addition, the proposed method shows better noise robustness and is more suitable for noisy environments.</description><identifier>ISSN: 1070-9622</identifier><identifier>EISSN: 1875-9203</identifier><identifier>DOI: 10.1155/2016/3989743</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Amplitudes ; Cross correlation ; Damage detection ; Mathematical models ; Structural damage ; Support vector machines ; Vibration</subject><ispartof>Shock and vibration, 2016-01, Vol.2016 (2016), p.1-12</ispartof><rights>Copyright © 2016 Lin-sheng Huo et al.</rights><rights>COPYRIGHT 2016 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2016 Lin-sheng Huo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-767230771110001ace9a054612e66dc62054a3fa53e2b9adb44541cd846b3d273</citedby><cites>FETCH-LOGICAL-c546t-767230771110001ace9a054612e66dc62054a3fa53e2b9adb44541cd846b3d273</cites><orcidid>0000-0002-3044-2630 ; 0000-0001-6948-3045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1777914895/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1777914895?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,74998</link.rule.ids></links><search><contributor>Shafieezadeh, Abdollah</contributor><creatorcontrib>Li, Hong-Nan</creatorcontrib><creatorcontrib>Yang, Yeong-Bin</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Huo, Linsheng</creatorcontrib><title>Damage Detection of Structures for Ambient Loading Based on Cross Correlation Function Amplitude and SVM</title><title>Shock and vibration</title><description>An effective method for the damage detection of skeletal structures which combines the cross correlation function amplitude (CCFA) with the support vector machine (SVM) is presented in this paper. The proposed method consists of two stages. Firstly, the data features are extracted from the CCFA, which, calculated from dynamic responses and as a representation of the modal shapes of the structure, changes when damage occurs on the structure. The data features are then input into the SVM with the one-against-one (OAO) algorithm to classify the damage status of the structure. The simulation data of IASC-ASCE benchmark model and a vibration experiment of truss structure are adopted to verify the feasibility of proposed method. The results show that the proposed method is suitable for the damage identification of skeletal structures with the limited sensors subjected to ambient excitation. As the CCFA based data features are sensitive to damage, the proposed method demonstrates its reliability in the diagnosis of structures with damage, especially for those with minor damage. In addition, the proposed method shows better noise robustness and is more suitable for noisy environments.</description><subject>Algorithms</subject><subject>Amplitudes</subject><subject>Cross correlation</subject><subject>Damage detection</subject><subject>Mathematical models</subject><subject>Structural damage</subject><subject>Support vector machines</subject><subject>Vibration</subject><issn>1070-9622</issn><issn>1875-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU1v1DAQhiMEEqVw44wscUGCtP6I7fi4bClUWsShwNWa2JOtV0m8OI4Q_x5vU4HEBfkw9viZ1zN-q-oloxeMSXnJKVOXwrRGN-JRdcZaLWvDqXhc9lTT2ijOn1bP5vlAKZVCNWfV3RWMsEdyhRldDnEisSe3OS0uLwln0sdENmMXcMpkF8GHaU_ew4yeFHSb4jyTbUwJB7gvvl6mVWUzHoeQF48EJk9uv39-Xj3pYZjxxUM8r75df_i6_VTvvny82W52tZONyrVWmguqNWOs9MjAoQFabhhHpbxTvBxA9CAF8s6A75pGNsz5tlGd8FyL8-pm1fURDvaYwgjpl40Q7H0ipr2FlIMb0FIhFUrPjWtl47FvgXbcqcb10njPRdF6s2odU_yx4JztGGaHwwATxmW2rJVSaKG5Kujrf9BDXNJUJrVMa21Y0xpZqIuV2kN5P0x9zAlcWR7H4OKEfSj5jWTFG9bSk-y7tcCdvjph_2ciRu3Jc3vy3D54XvC3K34XJg8_w__oVyuNhcEe_tKMGdoa8RuBzrKR</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Li, Hong-Nan</creator><creator>Yang, Yeong-Bin</creator><creator>Li, Xu</creator><creator>Huo, Linsheng</creator><general>Hindawi Publishing Corporation</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3044-2630</orcidid><orcidid>https://orcid.org/0000-0001-6948-3045</orcidid></search><sort><creationdate>20160101</creationdate><title>Damage Detection of Structures for Ambient Loading Based on Cross Correlation Function Amplitude and SVM</title><author>Li, Hong-Nan ; Yang, Yeong-Bin ; Li, Xu ; Huo, Linsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-767230771110001ace9a054612e66dc62054a3fa53e2b9adb44541cd846b3d273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Amplitudes</topic><topic>Cross correlation</topic><topic>Damage detection</topic><topic>Mathematical models</topic><topic>Structural damage</topic><topic>Support vector machines</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Hong-Nan</creatorcontrib><creatorcontrib>Yang, Yeong-Bin</creatorcontrib><creatorcontrib>Li, Xu</creatorcontrib><creatorcontrib>Huo, Linsheng</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Shock and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Hong-Nan</au><au>Yang, Yeong-Bin</au><au>Li, Xu</au><au>Huo, Linsheng</au><au>Shafieezadeh, Abdollah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Damage Detection of Structures for Ambient Loading Based on Cross Correlation Function Amplitude and SVM</atitle><jtitle>Shock and vibration</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1070-9622</issn><eissn>1875-9203</eissn><abstract>An effective method for the damage detection of skeletal structures which combines the cross correlation function amplitude (CCFA) with the support vector machine (SVM) is presented in this paper. The proposed method consists of two stages. Firstly, the data features are extracted from the CCFA, which, calculated from dynamic responses and as a representation of the modal shapes of the structure, changes when damage occurs on the structure. The data features are then input into the SVM with the one-against-one (OAO) algorithm to classify the damage status of the structure. The simulation data of IASC-ASCE benchmark model and a vibration experiment of truss structure are adopted to verify the feasibility of proposed method. The results show that the proposed method is suitable for the damage identification of skeletal structures with the limited sensors subjected to ambient excitation. As the CCFA based data features are sensitive to damage, the proposed method demonstrates its reliability in the diagnosis of structures with damage, especially for those with minor damage. In addition, the proposed method shows better noise robustness and is more suitable for noisy environments.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/3989743</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3044-2630</orcidid><orcidid>https://orcid.org/0000-0001-6948-3045</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-9622
ispartof Shock and vibration, 2016-01, Vol.2016 (2016), p.1-12
issn 1070-9622
1875-9203
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0356e5d29c854def8a0b2c64cf59dd23
source Publicly Available Content (ProQuest); Wiley Open Access
subjects Algorithms
Amplitudes
Cross correlation
Damage detection
Mathematical models
Structural damage
Support vector machines
Vibration
title Damage Detection of Structures for Ambient Loading Based on Cross Correlation Function Amplitude and SVM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Damage%20Detection%20of%20Structures%20for%20Ambient%20Loading%20Based%20on%20Cross%20Correlation%20Function%20Amplitude%20and%20SVM&rft.jtitle=Shock%20and%20vibration&rft.au=Li,%20Hong-Nan&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1070-9622&rft.eissn=1875-9203&rft_id=info:doi/10.1155/2016/3989743&rft_dat=%3Cgale_doaj_%3EA513641806%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c546t-767230771110001ace9a054612e66dc62054a3fa53e2b9adb44541cd846b3d273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777914895&rft_id=info:pmid/&rft_galeid=A513641806&rfr_iscdi=true