Loading…
Observation of an Electron Microburst With an Inverse Time‐Of‐Flight Energy Dispersion
Interactions between whistler mode chorus waves and electrons are a dominant mechanism for particle acceleration and loss in the outer radiation belt. One form of this loss is electron microburst precipitation: a sub‐second intense burst of electrons. Despite previous investigations, details regardi...
Saved in:
Published in: | Geophysical research letters 2023-08, Vol.50 (15), p.n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4103-46c4576085b8dd4ff34f77af68acccd53a1e1f6bbb0f23860f9658dc3b66b7063 |
---|---|
cites | cdi_FETCH-LOGICAL-c4103-46c4576085b8dd4ff34f77af68acccd53a1e1f6bbb0f23860f9658dc3b66b7063 |
container_end_page | n/a |
container_issue | 15 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 50 |
creator | Shumko, M. Miyoshi, Y. Blum, L. W. Halford, A. J. Breneman, A. W. Johnson, A. T. Sample, J. G. Klumpar, D. M. Spence, H. E. |
description | Interactions between whistler mode chorus waves and electrons are a dominant mechanism for particle acceleration and loss in the outer radiation belt. One form of this loss is electron microburst precipitation: a sub‐second intense burst of electrons. Despite previous investigations, details regarding the microburst‐chorus scattering mechanism—such as dominant resonance harmonic—are largely unconstrained. One way to observationally probe this is via the time‐of‐flight energy dispersion. If a single cyclotron resonance is dominant, then higher energy electrons will resonate at higher magnetic latitudes: sometimes resulting in an inverse time‐of‐flight dispersion with lower‐energy electrons leading. Here we present a clear example of this phenomena, observed by a FIREBIRD‐II CubeSat on 27 August 2015, that shows good agreement with the Miyoshi‐Saito time‐of‐flight model. When constrained by this observation, the Miyoshi‐Saito model predicts that a relatively narrowband chorus wave with a ∼0.2 of the equatorial electron gyrofrequency scattered the microburst.
Plain Language Summary
Wave‐particle interactions are a ubiquitous phenomenon in plasmas. Around Earth, interactions between electrons and a plasma wave termed whistler mode chorus leads to both the acceleration of the outer Van Allen radiation belt electrons, and rapid precipitation of electrons into Earth's atmosphere. One form of this precipitation is called electron microbursts: a sub‐second and intense bursts of electrons most often observed by high altitude balloons and low Earth orbiting satellites. While microbursts have been studied since the dawn of the Space Age, fundamental details regarding how they are generated are largely unknown. One clue to the properties of the scattering mechanism comes from energy‐dependent time‐of‐flight dispersion signatures. Electrons with a larger kinetic energy move faster, and will therefore precipitate before the electrons with lower kinetic energy. However, in this paper we show observations made by the FIREBIRD‐II CubeSat mission of the opposite: lower‐energy electrons arriving first. This counter‐intuitive phenomena, termed inverse time‐of‐flight energy dispersion, together with models, is a powerful tool to sense the detailed nature of how plasma waves scatter electrons in Earth's near space environment.
Key Points
FIREBIRD‐II observed a microburst whose 250 keV electrons arrived before the 650 keV electrons
We estimate that the observed inverse energy dis |
doi_str_mv | 10.1029/2023GL104804 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03669e4043d04c9c88695a841d8cc4c7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03669e4043d04c9c88695a841d8cc4c7</doaj_id><sourcerecordid>2852486519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-46c4576085b8dd4ff34f77af68acccd53a1e1f6bbb0f23860f9658dc3b66b7063</originalsourceid><addsrcrecordid>eNp9kc1KAzEQx4MoWKs3H2DBq9XJx2azR9G2FioFqQheQjabtCnb3ZpsK735CD6jT2JqRTx5mc8f_xlmEDrHcIWB5NcECB2OMTAB7AB1cM5YTwBkh6gDkMeYZPwYnYSwAAAKFHfQy6QIxm9U65o6aWyi6qRfGd36mD447Zti7UObPLt2vuuN6o3xwSRTtzSf7x8TG82gcrN5m_Rr42fb5M6FVUSi3Ck6sqoK5uzHd9HToD-9ve-NJ8PR7c24pxkG2mNcszTjINJClCWzljKbZcpyobTWZUoVNtjyoijAEio42JynotS04LzIgNMuGu11y0Yt5Mq7pfJb2SgnvwuNn0nlW6crI4FynhsGjJbAdK6F4HmqBMOl0JrpLGpd7LVWvnldm9DKRbP2dVxfEpESJniK80hd7ql4nxC8sb9TMcjdJ-TfT0Sc7PE3V5ntv6wcPo45J4TSL6hnikg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2852486519</pqid></control><display><type>article</type><title>Observation of an Electron Microburst With an Inverse Time‐Of‐Flight Energy Dispersion</title><source>Wiley-Blackwell AGU Digital Archive</source><source>Wiley Open Access</source><creator>Shumko, M. ; Miyoshi, Y. ; Blum, L. W. ; Halford, A. J. ; Breneman, A. W. ; Johnson, A. T. ; Sample, J. G. ; Klumpar, D. M. ; Spence, H. E.</creator><creatorcontrib>Shumko, M. ; Miyoshi, Y. ; Blum, L. W. ; Halford, A. J. ; Breneman, A. W. ; Johnson, A. T. ; Sample, J. G. ; Klumpar, D. M. ; Spence, H. E.</creatorcontrib><description>Interactions between whistler mode chorus waves and electrons are a dominant mechanism for particle acceleration and loss in the outer radiation belt. One form of this loss is electron microburst precipitation: a sub‐second intense burst of electrons. Despite previous investigations, details regarding the microburst‐chorus scattering mechanism—such as dominant resonance harmonic—are largely unconstrained. One way to observationally probe this is via the time‐of‐flight energy dispersion. If a single cyclotron resonance is dominant, then higher energy electrons will resonate at higher magnetic latitudes: sometimes resulting in an inverse time‐of‐flight dispersion with lower‐energy electrons leading. Here we present a clear example of this phenomena, observed by a FIREBIRD‐II CubeSat on 27 August 2015, that shows good agreement with the Miyoshi‐Saito time‐of‐flight model. When constrained by this observation, the Miyoshi‐Saito model predicts that a relatively narrowband chorus wave with a ∼0.2 of the equatorial electron gyrofrequency scattered the microburst.
Plain Language Summary
Wave‐particle interactions are a ubiquitous phenomenon in plasmas. Around Earth, interactions between electrons and a plasma wave termed whistler mode chorus leads to both the acceleration of the outer Van Allen radiation belt electrons, and rapid precipitation of electrons into Earth's atmosphere. One form of this precipitation is called electron microbursts: a sub‐second and intense bursts of electrons most often observed by high altitude balloons and low Earth orbiting satellites. While microbursts have been studied since the dawn of the Space Age, fundamental details regarding how they are generated are largely unknown. One clue to the properties of the scattering mechanism comes from energy‐dependent time‐of‐flight dispersion signatures. Electrons with a larger kinetic energy move faster, and will therefore precipitate before the electrons with lower kinetic energy. However, in this paper we show observations made by the FIREBIRD‐II CubeSat mission of the opposite: lower‐energy electrons arriving first. This counter‐intuitive phenomena, termed inverse time‐of‐flight energy dispersion, together with models, is a powerful tool to sense the detailed nature of how plasma waves scatter electrons in Earth's near space environment.
Key Points
FIREBIRD‐II observed a microburst whose 250 keV electrons arrived before the 650 keV electrons
We estimate that the observed inverse energy dispersion of 0.1 ms/keV is statistically significant
Our observations are consistent with the inverse time‐of‐flight model of chorus waves resonating with 100s keV electrons</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2023GL104804</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Acceleration ; Aerospace environments ; Atmospheric models ; Balloons ; chorus wave ; Chorus waves ; CubeSat ; Cyclotron resonance ; Dispersion ; Earth ; Earth orbits ; Electron microbursts ; Electron precipitation ; Electrons ; Energy ; FIREBIRD ; Flight ; Gyrofrequency ; High altitude ; High altitude balloons ; Kinetic energy ; Low earth orbits ; Meteorological balloons ; microburst ; Microbursts ; Microbursts (meteorology) ; Narrowband ; Outer radiation belt ; Particle acceleration ; Particle interactions ; Plasma waves ; Precipitation ; Radiation ; Radiation belt electrons ; Radiation belts ; Resonance ; Resonance scattering ; Time dependence</subject><ispartof>Geophysical research letters, 2023-08, Vol.50 (15), p.n/a</ispartof><rights>2023. The Authors.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-46c4576085b8dd4ff34f77af68acccd53a1e1f6bbb0f23860f9658dc3b66b7063</citedby><cites>FETCH-LOGICAL-c4103-46c4576085b8dd4ff34f77af68acccd53a1e1f6bbb0f23860f9658dc3b66b7063</cites><orcidid>0000-0002-0437-7521 ; 0000-0001-7998-1240 ; 0000-0001-6331-497X ; 0000-0002-2526-2205 ; 0000-0002-4797-5476 ; 0000-0002-5383-4602 ; 0000-0002-9516-9292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023GL104804$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023GL104804$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11513,11561,27923,27924,46051,46467,46475,46891</link.rule.ids></links><search><creatorcontrib>Shumko, M.</creatorcontrib><creatorcontrib>Miyoshi, Y.</creatorcontrib><creatorcontrib>Blum, L. W.</creatorcontrib><creatorcontrib>Halford, A. J.</creatorcontrib><creatorcontrib>Breneman, A. W.</creatorcontrib><creatorcontrib>Johnson, A. T.</creatorcontrib><creatorcontrib>Sample, J. G.</creatorcontrib><creatorcontrib>Klumpar, D. M.</creatorcontrib><creatorcontrib>Spence, H. E.</creatorcontrib><title>Observation of an Electron Microburst With an Inverse Time‐Of‐Flight Energy Dispersion</title><title>Geophysical research letters</title><description>Interactions between whistler mode chorus waves and electrons are a dominant mechanism for particle acceleration and loss in the outer radiation belt. One form of this loss is electron microburst precipitation: a sub‐second intense burst of electrons. Despite previous investigations, details regarding the microburst‐chorus scattering mechanism—such as dominant resonance harmonic—are largely unconstrained. One way to observationally probe this is via the time‐of‐flight energy dispersion. If a single cyclotron resonance is dominant, then higher energy electrons will resonate at higher magnetic latitudes: sometimes resulting in an inverse time‐of‐flight dispersion with lower‐energy electrons leading. Here we present a clear example of this phenomena, observed by a FIREBIRD‐II CubeSat on 27 August 2015, that shows good agreement with the Miyoshi‐Saito time‐of‐flight model. When constrained by this observation, the Miyoshi‐Saito model predicts that a relatively narrowband chorus wave with a ∼0.2 of the equatorial electron gyrofrequency scattered the microburst.
Plain Language Summary
Wave‐particle interactions are a ubiquitous phenomenon in plasmas. Around Earth, interactions between electrons and a plasma wave termed whistler mode chorus leads to both the acceleration of the outer Van Allen radiation belt electrons, and rapid precipitation of electrons into Earth's atmosphere. One form of this precipitation is called electron microbursts: a sub‐second and intense bursts of electrons most often observed by high altitude balloons and low Earth orbiting satellites. While microbursts have been studied since the dawn of the Space Age, fundamental details regarding how they are generated are largely unknown. One clue to the properties of the scattering mechanism comes from energy‐dependent time‐of‐flight dispersion signatures. Electrons with a larger kinetic energy move faster, and will therefore precipitate before the electrons with lower kinetic energy. However, in this paper we show observations made by the FIREBIRD‐II CubeSat mission of the opposite: lower‐energy electrons arriving first. This counter‐intuitive phenomena, termed inverse time‐of‐flight energy dispersion, together with models, is a powerful tool to sense the detailed nature of how plasma waves scatter electrons in Earth's near space environment.
Key Points
FIREBIRD‐II observed a microburst whose 250 keV electrons arrived before the 650 keV electrons
We estimate that the observed inverse energy dispersion of 0.1 ms/keV is statistically significant
Our observations are consistent with the inverse time‐of‐flight model of chorus waves resonating with 100s keV electrons</description><subject>Acceleration</subject><subject>Aerospace environments</subject><subject>Atmospheric models</subject><subject>Balloons</subject><subject>chorus wave</subject><subject>Chorus waves</subject><subject>CubeSat</subject><subject>Cyclotron resonance</subject><subject>Dispersion</subject><subject>Earth</subject><subject>Earth orbits</subject><subject>Electron microbursts</subject><subject>Electron precipitation</subject><subject>Electrons</subject><subject>Energy</subject><subject>FIREBIRD</subject><subject>Flight</subject><subject>Gyrofrequency</subject><subject>High altitude</subject><subject>High altitude balloons</subject><subject>Kinetic energy</subject><subject>Low earth orbits</subject><subject>Meteorological balloons</subject><subject>microburst</subject><subject>Microbursts</subject><subject>Microbursts (meteorology)</subject><subject>Narrowband</subject><subject>Outer radiation belt</subject><subject>Particle acceleration</subject><subject>Particle interactions</subject><subject>Plasma waves</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Radiation belt electrons</subject><subject>Radiation belts</subject><subject>Resonance</subject><subject>Resonance scattering</subject><subject>Time dependence</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1KAzEQx4MoWKs3H2DBq9XJx2azR9G2FioFqQheQjabtCnb3ZpsK735CD6jT2JqRTx5mc8f_xlmEDrHcIWB5NcECB2OMTAB7AB1cM5YTwBkh6gDkMeYZPwYnYSwAAAKFHfQy6QIxm9U65o6aWyi6qRfGd36mD447Zti7UObPLt2vuuN6o3xwSRTtzSf7x8TG82gcrN5m_Rr42fb5M6FVUSi3Ck6sqoK5uzHd9HToD-9ve-NJ8PR7c24pxkG2mNcszTjINJClCWzljKbZcpyobTWZUoVNtjyoijAEio42JynotS04LzIgNMuGu11y0Yt5Mq7pfJb2SgnvwuNn0nlW6crI4FynhsGjJbAdK6F4HmqBMOl0JrpLGpd7LVWvnldm9DKRbP2dVxfEpESJniK80hd7ql4nxC8sb9TMcjdJ-TfT0Sc7PE3V5ntv6wcPo45J4TSL6hnikg</recordid><startdate>20230816</startdate><enddate>20230816</enddate><creator>Shumko, M.</creator><creator>Miyoshi, Y.</creator><creator>Blum, L. W.</creator><creator>Halford, A. J.</creator><creator>Breneman, A. W.</creator><creator>Johnson, A. T.</creator><creator>Sample, J. G.</creator><creator>Klumpar, D. M.</creator><creator>Spence, H. E.</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0437-7521</orcidid><orcidid>https://orcid.org/0000-0001-7998-1240</orcidid><orcidid>https://orcid.org/0000-0001-6331-497X</orcidid><orcidid>https://orcid.org/0000-0002-2526-2205</orcidid><orcidid>https://orcid.org/0000-0002-4797-5476</orcidid><orcidid>https://orcid.org/0000-0002-5383-4602</orcidid><orcidid>https://orcid.org/0000-0002-9516-9292</orcidid></search><sort><creationdate>20230816</creationdate><title>Observation of an Electron Microburst With an Inverse Time‐Of‐Flight Energy Dispersion</title><author>Shumko, M. ; Miyoshi, Y. ; Blum, L. W. ; Halford, A. J. ; Breneman, A. W. ; Johnson, A. T. ; Sample, J. G. ; Klumpar, D. M. ; Spence, H. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-46c4576085b8dd4ff34f77af68acccd53a1e1f6bbb0f23860f9658dc3b66b7063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Aerospace environments</topic><topic>Atmospheric models</topic><topic>Balloons</topic><topic>chorus wave</topic><topic>Chorus waves</topic><topic>CubeSat</topic><topic>Cyclotron resonance</topic><topic>Dispersion</topic><topic>Earth</topic><topic>Earth orbits</topic><topic>Electron microbursts</topic><topic>Electron precipitation</topic><topic>Electrons</topic><topic>Energy</topic><topic>FIREBIRD</topic><topic>Flight</topic><topic>Gyrofrequency</topic><topic>High altitude</topic><topic>High altitude balloons</topic><topic>Kinetic energy</topic><topic>Low earth orbits</topic><topic>Meteorological balloons</topic><topic>microburst</topic><topic>Microbursts</topic><topic>Microbursts (meteorology)</topic><topic>Narrowband</topic><topic>Outer radiation belt</topic><topic>Particle acceleration</topic><topic>Particle interactions</topic><topic>Plasma waves</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Radiation belt electrons</topic><topic>Radiation belts</topic><topic>Resonance</topic><topic>Resonance scattering</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shumko, M.</creatorcontrib><creatorcontrib>Miyoshi, Y.</creatorcontrib><creatorcontrib>Blum, L. W.</creatorcontrib><creatorcontrib>Halford, A. J.</creatorcontrib><creatorcontrib>Breneman, A. W.</creatorcontrib><creatorcontrib>Johnson, A. T.</creatorcontrib><creatorcontrib>Sample, J. G.</creatorcontrib><creatorcontrib>Klumpar, D. M.</creatorcontrib><creatorcontrib>Spence, H. E.</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shumko, M.</au><au>Miyoshi, Y.</au><au>Blum, L. W.</au><au>Halford, A. J.</au><au>Breneman, A. W.</au><au>Johnson, A. T.</au><au>Sample, J. G.</au><au>Klumpar, D. M.</au><au>Spence, H. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of an Electron Microburst With an Inverse Time‐Of‐Flight Energy Dispersion</atitle><jtitle>Geophysical research letters</jtitle><date>2023-08-16</date><risdate>2023</risdate><volume>50</volume><issue>15</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Interactions between whistler mode chorus waves and electrons are a dominant mechanism for particle acceleration and loss in the outer radiation belt. One form of this loss is electron microburst precipitation: a sub‐second intense burst of electrons. Despite previous investigations, details regarding the microburst‐chorus scattering mechanism—such as dominant resonance harmonic—are largely unconstrained. One way to observationally probe this is via the time‐of‐flight energy dispersion. If a single cyclotron resonance is dominant, then higher energy electrons will resonate at higher magnetic latitudes: sometimes resulting in an inverse time‐of‐flight dispersion with lower‐energy electrons leading. Here we present a clear example of this phenomena, observed by a FIREBIRD‐II CubeSat on 27 August 2015, that shows good agreement with the Miyoshi‐Saito time‐of‐flight model. When constrained by this observation, the Miyoshi‐Saito model predicts that a relatively narrowband chorus wave with a ∼0.2 of the equatorial electron gyrofrequency scattered the microburst.
Plain Language Summary
Wave‐particle interactions are a ubiquitous phenomenon in plasmas. Around Earth, interactions between electrons and a plasma wave termed whistler mode chorus leads to both the acceleration of the outer Van Allen radiation belt electrons, and rapid precipitation of electrons into Earth's atmosphere. One form of this precipitation is called electron microbursts: a sub‐second and intense bursts of electrons most often observed by high altitude balloons and low Earth orbiting satellites. While microbursts have been studied since the dawn of the Space Age, fundamental details regarding how they are generated are largely unknown. One clue to the properties of the scattering mechanism comes from energy‐dependent time‐of‐flight dispersion signatures. Electrons with a larger kinetic energy move faster, and will therefore precipitate before the electrons with lower kinetic energy. However, in this paper we show observations made by the FIREBIRD‐II CubeSat mission of the opposite: lower‐energy electrons arriving first. This counter‐intuitive phenomena, termed inverse time‐of‐flight energy dispersion, together with models, is a powerful tool to sense the detailed nature of how plasma waves scatter electrons in Earth's near space environment.
Key Points
FIREBIRD‐II observed a microburst whose 250 keV electrons arrived before the 650 keV electrons
We estimate that the observed inverse energy dispersion of 0.1 ms/keV is statistically significant
Our observations are consistent with the inverse time‐of‐flight model of chorus waves resonating with 100s keV electrons</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2023GL104804</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0437-7521</orcidid><orcidid>https://orcid.org/0000-0001-7998-1240</orcidid><orcidid>https://orcid.org/0000-0001-6331-497X</orcidid><orcidid>https://orcid.org/0000-0002-2526-2205</orcidid><orcidid>https://orcid.org/0000-0002-4797-5476</orcidid><orcidid>https://orcid.org/0000-0002-5383-4602</orcidid><orcidid>https://orcid.org/0000-0002-9516-9292</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2023-08, Vol.50 (15), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_03669e4043d04c9c88695a841d8cc4c7 |
source | Wiley-Blackwell AGU Digital Archive; Wiley Open Access |
subjects | Acceleration Aerospace environments Atmospheric models Balloons chorus wave Chorus waves CubeSat Cyclotron resonance Dispersion Earth Earth orbits Electron microbursts Electron precipitation Electrons Energy FIREBIRD Flight Gyrofrequency High altitude High altitude balloons Kinetic energy Low earth orbits Meteorological balloons microburst Microbursts Microbursts (meteorology) Narrowband Outer radiation belt Particle acceleration Particle interactions Plasma waves Precipitation Radiation Radiation belt electrons Radiation belts Resonance Resonance scattering Time dependence |
title | Observation of an Electron Microburst With an Inverse Time‐Of‐Flight Energy Dispersion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T13%3A05%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20an%20Electron%20Microburst%20With%20an%20Inverse%20Time%E2%80%90Of%E2%80%90Flight%20Energy%20Dispersion&rft.jtitle=Geophysical%20research%20letters&rft.au=Shumko,%20M.&rft.date=2023-08-16&rft.volume=50&rft.issue=15&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2023GL104804&rft_dat=%3Cproquest_doaj_%3E2852486519%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4103-46c4576085b8dd4ff34f77af68acccd53a1e1f6bbb0f23860f9658dc3b66b7063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2852486519&rft_id=info:pmid/&rfr_iscdi=true |