Loading…

An Image-Processing Tool for Size and Shape Analysis of Manufactured Irregular Polyethylene Microparticles

Microplastics (MPs) pose a significant risk to humans and animals due to their ability to absorb, adsorb, and desorb organic pollutants. MPs catchment from either sediments or water bodies is crucial for risk assessment, but fast and effective particle quantification of irregularly shaped particles...

Full description

Saved in:
Bibliographic Details
Published in:Microplastics 2024-03, Vol.3 (1), p.124-146
Main Authors: Fritz, Melanie, Deutsch, Lukas F., Wijaya, Karunia Putra, Götz, Thomas, Fischer, Christian B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-303348babd25c8f74cea2f85bb88cc9b6c71f26d02038917fd695ca8d5b5ff743
cites cdi_FETCH-LOGICAL-c293t-303348babd25c8f74cea2f85bb88cc9b6c71f26d02038917fd695ca8d5b5ff743
container_end_page 146
container_issue 1
container_start_page 124
container_title Microplastics
container_volume 3
creator Fritz, Melanie
Deutsch, Lukas F.
Wijaya, Karunia Putra
Götz, Thomas
Fischer, Christian B.
description Microplastics (MPs) pose a significant risk to humans and animals due to their ability to absorb, adsorb, and desorb organic pollutants. MPs catchment from either sediments or water bodies is crucial for risk assessment, but fast and effective particle quantification of irregularly shaped particles is only marginally addressed. Many studies used microscopy methods to count MP particles, which are tedious for large sample sizes. Alternatively, this work presents an algorithm developed in the free software GNU Octave to analyze microscope images of MP particles with variable sizes and shapes. The algorithm can detect and distinguish different particles, compensate for uneven illumination and low image contrast, find high-contrast areas, unify edge regions, and fill the remaining pixels of stacked particles. The fully automatic algorithm calculates shape parameters such as convexity, solidity, reciprocal aspect ratio, rectangularity, and the Feret major axis ratio and generates the particle size distribution. The study tested low-density polyethylene particles with sizes of 50–100 µm and 200–300 µm. A scanning electron microscope image series analyzed with Octave was compared to a manual evaluation using ImageJ. Although the fully automatic algorithm did not identify all particles, the comprehensive tests demonstrate a qualitatively accurate particle size and shape monitoring applicable to any MPs, which processes larger data sets in a short time and is compatible with MATLAB-based codes.
doi_str_mv 10.3390/microplastics3010008
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_037d7cc9e1eb4d6d89e5f9c7ee0004be</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_037d7cc9e1eb4d6d89e5f9c7ee0004be</doaj_id><sourcerecordid>oai_doaj_org_article_037d7cc9e1eb4d6d89e5f9c7ee0004be</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-303348babd25c8f74cea2f85bb88cc9b6c71f26d02038917fd695ca8d5b5ff743</originalsourceid><addsrcrecordid>eNptkMtqwzAQRUVpoSHNH3ShH3ArS35IyxD6MCQ0kHRt9Bg5DooVJGfhfn3dJJQuupphuBzuHIQeU_LEmCDPh1YHf3Qy9q2OjKSEEH6DJrQoWcIFFbd_9ns0i3E_JijPy7TgE7Sfd7g6yAaSdfAaYmy7Bm-9d9j6gDftF2DZGbzZySPgeSfdENuIvcUr2Z2s1P0pgMFVCNCcnAx47d0A_W5w0AFenavJMDZzEB_QnZUuwuw6p-jz9WW7eE-WH2_VYr5MNBWsTxhhLONKKkNzzW2ZaZDU8lwpzrUWqtBlamlhCCWMi7S0phC5ltzkKrdjnE1RdeEaL_f1MbQHGYbay7Y-H3xo6mulmrDSlCMUUlCZKQwXkFuhS4DRUaZgZGUX1vhIjAHsLy8l9Y_--j_97BuYAH8L</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Image-Processing Tool for Size and Shape Analysis of Manufactured Irregular Polyethylene Microparticles</title><source>EZB Electronic Journals Library</source><creator>Fritz, Melanie ; Deutsch, Lukas F. ; Wijaya, Karunia Putra ; Götz, Thomas ; Fischer, Christian B.</creator><creatorcontrib>Fritz, Melanie ; Deutsch, Lukas F. ; Wijaya, Karunia Putra ; Götz, Thomas ; Fischer, Christian B.</creatorcontrib><description>Microplastics (MPs) pose a significant risk to humans and animals due to their ability to absorb, adsorb, and desorb organic pollutants. MPs catchment from either sediments or water bodies is crucial for risk assessment, but fast and effective particle quantification of irregularly shaped particles is only marginally addressed. Many studies used microscopy methods to count MP particles, which are tedious for large sample sizes. Alternatively, this work presents an algorithm developed in the free software GNU Octave to analyze microscope images of MP particles with variable sizes and shapes. The algorithm can detect and distinguish different particles, compensate for uneven illumination and low image contrast, find high-contrast areas, unify edge regions, and fill the remaining pixels of stacked particles. The fully automatic algorithm calculates shape parameters such as convexity, solidity, reciprocal aspect ratio, rectangularity, and the Feret major axis ratio and generates the particle size distribution. The study tested low-density polyethylene particles with sizes of 50–100 µm and 200–300 µm. A scanning electron microscope image series analyzed with Octave was compared to a manual evaluation using ImageJ. Although the fully automatic algorithm did not identify all particles, the comprehensive tests demonstrate a qualitatively accurate particle size and shape monitoring applicable to any MPs, which processes larger data sets in a short time and is compatible with MATLAB-based codes.</description><identifier>ISSN: 2673-8929</identifier><identifier>EISSN: 2673-8929</identifier><identifier>DOI: 10.3390/microplastics3010008</identifier><language>eng</language><publisher>MDPI AG</publisher><subject>GNU Octave ; microplastic ; particle size distribution ; quantification ; scanning electron microscopy ; shape classification</subject><ispartof>Microplastics, 2024-03, Vol.3 (1), p.124-146</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-303348babd25c8f74cea2f85bb88cc9b6c71f26d02038917fd695ca8d5b5ff743</citedby><cites>FETCH-LOGICAL-c293t-303348babd25c8f74cea2f85bb88cc9b6c71f26d02038917fd695ca8d5b5ff743</cites><orcidid>0000-0001-6083-0602 ; 0000-0001-5610-4210 ; 0000-0003-2850-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fritz, Melanie</creatorcontrib><creatorcontrib>Deutsch, Lukas F.</creatorcontrib><creatorcontrib>Wijaya, Karunia Putra</creatorcontrib><creatorcontrib>Götz, Thomas</creatorcontrib><creatorcontrib>Fischer, Christian B.</creatorcontrib><title>An Image-Processing Tool for Size and Shape Analysis of Manufactured Irregular Polyethylene Microparticles</title><title>Microplastics</title><description>Microplastics (MPs) pose a significant risk to humans and animals due to their ability to absorb, adsorb, and desorb organic pollutants. MPs catchment from either sediments or water bodies is crucial for risk assessment, but fast and effective particle quantification of irregularly shaped particles is only marginally addressed. Many studies used microscopy methods to count MP particles, which are tedious for large sample sizes. Alternatively, this work presents an algorithm developed in the free software GNU Octave to analyze microscope images of MP particles with variable sizes and shapes. The algorithm can detect and distinguish different particles, compensate for uneven illumination and low image contrast, find high-contrast areas, unify edge regions, and fill the remaining pixels of stacked particles. The fully automatic algorithm calculates shape parameters such as convexity, solidity, reciprocal aspect ratio, rectangularity, and the Feret major axis ratio and generates the particle size distribution. The study tested low-density polyethylene particles with sizes of 50–100 µm and 200–300 µm. A scanning electron microscope image series analyzed with Octave was compared to a manual evaluation using ImageJ. Although the fully automatic algorithm did not identify all particles, the comprehensive tests demonstrate a qualitatively accurate particle size and shape monitoring applicable to any MPs, which processes larger data sets in a short time and is compatible with MATLAB-based codes.</description><subject>GNU Octave</subject><subject>microplastic</subject><subject>particle size distribution</subject><subject>quantification</subject><subject>scanning electron microscopy</subject><subject>shape classification</subject><issn>2673-8929</issn><issn>2673-8929</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNptkMtqwzAQRUVpoSHNH3ShH3ArS35IyxD6MCQ0kHRt9Bg5DooVJGfhfn3dJJQuupphuBzuHIQeU_LEmCDPh1YHf3Qy9q2OjKSEEH6DJrQoWcIFFbd_9ns0i3E_JijPy7TgE7Sfd7g6yAaSdfAaYmy7Bm-9d9j6gDftF2DZGbzZySPgeSfdENuIvcUr2Z2s1P0pgMFVCNCcnAx47d0A_W5w0AFenavJMDZzEB_QnZUuwuw6p-jz9WW7eE-WH2_VYr5MNBWsTxhhLONKKkNzzW2ZaZDU8lwpzrUWqtBlamlhCCWMi7S0phC5ltzkKrdjnE1RdeEaL_f1MbQHGYbay7Y-H3xo6mulmrDSlCMUUlCZKQwXkFuhS4DRUaZgZGUX1vhIjAHsLy8l9Y_--j_97BuYAH8L</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Fritz, Melanie</creator><creator>Deutsch, Lukas F.</creator><creator>Wijaya, Karunia Putra</creator><creator>Götz, Thomas</creator><creator>Fischer, Christian B.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6083-0602</orcidid><orcidid>https://orcid.org/0000-0001-5610-4210</orcidid><orcidid>https://orcid.org/0000-0003-2850-5361</orcidid></search><sort><creationdate>20240301</creationdate><title>An Image-Processing Tool for Size and Shape Analysis of Manufactured Irregular Polyethylene Microparticles</title><author>Fritz, Melanie ; Deutsch, Lukas F. ; Wijaya, Karunia Putra ; Götz, Thomas ; Fischer, Christian B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-303348babd25c8f74cea2f85bb88cc9b6c71f26d02038917fd695ca8d5b5ff743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>GNU Octave</topic><topic>microplastic</topic><topic>particle size distribution</topic><topic>quantification</topic><topic>scanning electron microscopy</topic><topic>shape classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fritz, Melanie</creatorcontrib><creatorcontrib>Deutsch, Lukas F.</creatorcontrib><creatorcontrib>Wijaya, Karunia Putra</creatorcontrib><creatorcontrib>Götz, Thomas</creatorcontrib><creatorcontrib>Fischer, Christian B.</creatorcontrib><collection>CrossRef</collection><collection>Directory of Open Access Journals</collection><jtitle>Microplastics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fritz, Melanie</au><au>Deutsch, Lukas F.</au><au>Wijaya, Karunia Putra</au><au>Götz, Thomas</au><au>Fischer, Christian B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Image-Processing Tool for Size and Shape Analysis of Manufactured Irregular Polyethylene Microparticles</atitle><jtitle>Microplastics</jtitle><date>2024-03-01</date><risdate>2024</risdate><volume>3</volume><issue>1</issue><spage>124</spage><epage>146</epage><pages>124-146</pages><issn>2673-8929</issn><eissn>2673-8929</eissn><abstract>Microplastics (MPs) pose a significant risk to humans and animals due to their ability to absorb, adsorb, and desorb organic pollutants. MPs catchment from either sediments or water bodies is crucial for risk assessment, but fast and effective particle quantification of irregularly shaped particles is only marginally addressed. Many studies used microscopy methods to count MP particles, which are tedious for large sample sizes. Alternatively, this work presents an algorithm developed in the free software GNU Octave to analyze microscope images of MP particles with variable sizes and shapes. The algorithm can detect and distinguish different particles, compensate for uneven illumination and low image contrast, find high-contrast areas, unify edge regions, and fill the remaining pixels of stacked particles. The fully automatic algorithm calculates shape parameters such as convexity, solidity, reciprocal aspect ratio, rectangularity, and the Feret major axis ratio and generates the particle size distribution. The study tested low-density polyethylene particles with sizes of 50–100 µm and 200–300 µm. A scanning electron microscope image series analyzed with Octave was compared to a manual evaluation using ImageJ. Although the fully automatic algorithm did not identify all particles, the comprehensive tests demonstrate a qualitatively accurate particle size and shape monitoring applicable to any MPs, which processes larger data sets in a short time and is compatible with MATLAB-based codes.</abstract><pub>MDPI AG</pub><doi>10.3390/microplastics3010008</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6083-0602</orcidid><orcidid>https://orcid.org/0000-0001-5610-4210</orcidid><orcidid>https://orcid.org/0000-0003-2850-5361</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-8929
ispartof Microplastics, 2024-03, Vol.3 (1), p.124-146
issn 2673-8929
2673-8929
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_037d7cc9e1eb4d6d89e5f9c7ee0004be
source EZB Electronic Journals Library
subjects GNU Octave
microplastic
particle size distribution
quantification
scanning electron microscopy
shape classification
title An Image-Processing Tool for Size and Shape Analysis of Manufactured Irregular Polyethylene Microparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Image-Processing%20Tool%20for%20Size%20and%20Shape%20Analysis%20of%20Manufactured%20Irregular%20Polyethylene%20Microparticles&rft.jtitle=Microplastics&rft.au=Fritz,%20Melanie&rft.date=2024-03-01&rft.volume=3&rft.issue=1&rft.spage=124&rft.epage=146&rft.pages=124-146&rft.issn=2673-8929&rft.eissn=2673-8929&rft_id=info:doi/10.3390/microplastics3010008&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_037d7cc9e1eb4d6d89e5f9c7ee0004be%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-303348babd25c8f74cea2f85bb88cc9b6c71f26d02038917fd695ca8d5b5ff743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true