Loading…

pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity

pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increa...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cellular neuroscience 2023-03, Vol.17, p.1120651
Main Authors: Seidenthal, Marius, Jánosi, Barbara, Rosenkranz, Nils, Schuh, Noah, Elvers, Nora, Willoughby, Miles, Zhao, Xinda, Gottschalk, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3
cites cdi_FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3
container_end_page
container_issue
container_start_page 1120651
container_title Frontiers in cellular neuroscience
container_volume 17
creator Seidenthal, Marius
Jánosi, Barbara
Rosenkranz, Nils
Schuh, Noah
Elvers, Nora
Willoughby, Miles
Zhao, Xinda
Gottschalk, Alexander
description pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increase. SV fusion, recycling and acidification can thus be tracked by tagging integral SV proteins with pH-sensitive proteins. Neurotransmission is generally activated by electrical stimulation, which is not feasible in small, intact animals. Previous approaches depended on distinct (sensory) stimuli, thus limiting the addressable neuron types. To overcome these limitations, we established an all-optical approach to stimulate and visualize SV fusion and recycling. We combined distinct pH-sensitive fluorescent proteins (inserted into the SV protein synaptogyrin) and light-gated channelrhodopsins (ChRs) for optical stimulation, overcoming optical crosstalk and thus enabling an all-optical approach. We generated two different variants of the pH-sensitive optogenetic reporter of vesicle recycling (pOpsicle) and tested them in cholinergic neurons of intact nematodes. First, we combined the red fluorescent protein pHuji with the blue-light gated ChR2(H134R), and second, the green fluorescent pHluorin combined with the novel red-shifted ChR ChrimsonSA. In both cases, fluorescence increases were observed after optical stimulation. Increase and subsequent decline of fluorescence was affected by mutations of proteins involved in SV fusion and endocytosis. These results establish pOpsicle as a non-invasive, all-optical approach to investigate different steps of the SV cycle.
doi_str_mv 10.3389/fncel.2023.1120651
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_037ef8e9d6194b00b03aa3600f72693e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_037ef8e9d6194b00b03aa3600f72693e</doaj_id><sourcerecordid>2802422574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEoqXwAhyQJS5csvhPYidcUFUBrVSpFzhbjjPeeuW1g-1stS_Ec-LsLlXLySPPN78Zj7-qek_wirGu_2y8BreimLIVIRTzlryozgnntG4Jpi-fxGfVm5Q2GHPKm-51dcYE5hx35Lz6M91NyWoHX9ClR8q5OkzZauVQhCnEDBGlfcqwRSYsoVdLGu3gUFREeq-d9Wukw3awfomm6zqBTzbbHSDj5hAhafAZTTFksD6hB5vvUekT1uBhwW2Vt9PsVLbBo2CQhzkGX4ZQulBs3r-tXhnlErw7nRfVr-_ffl5d17d3P26uLm9r3fQi133Tq1bwkXHGiFENxYJjrFnTCtoSxQcsGAVGtFG9Fi0YYCMZWgakg9EwzS6qmyN3DGojp2i3Ku5lUFYeLkJcSxXz8nSJmQDTQT9y0jcDxgNmSrHSzgjKewaF9fXImuZhC-OygqjcM-jzjLf3ch12kuDyZW1DC-HTiRDD7xlSlltbVumc8hDmJGmHaUNpK5oi_fifdBPmWFZYVKKngtCuW4D0qNIxpBTBPE5DsFw8JQ-ekoun5MlTpejD03c8lvwzEfsL2RDNQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792712882</pqid></control><display><type>article</type><title>pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Seidenthal, Marius ; Jánosi, Barbara ; Rosenkranz, Nils ; Schuh, Noah ; Elvers, Nora ; Willoughby, Miles ; Zhao, Xinda ; Gottschalk, Alexander</creator><creatorcontrib>Seidenthal, Marius ; Jánosi, Barbara ; Rosenkranz, Nils ; Schuh, Noah ; Elvers, Nora ; Willoughby, Miles ; Zhao, Xinda ; Gottschalk, Alexander</creatorcontrib><description>pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increase. SV fusion, recycling and acidification can thus be tracked by tagging integral SV proteins with pH-sensitive proteins. Neurotransmission is generally activated by electrical stimulation, which is not feasible in small, intact animals. Previous approaches depended on distinct (sensory) stimuli, thus limiting the addressable neuron types. To overcome these limitations, we established an all-optical approach to stimulate and visualize SV fusion and recycling. We combined distinct pH-sensitive fluorescent proteins (inserted into the SV protein synaptogyrin) and light-gated channelrhodopsins (ChRs) for optical stimulation, overcoming optical crosstalk and thus enabling an all-optical approach. We generated two different variants of the pH-sensitive optogenetic reporter of vesicle recycling (pOpsicle) and tested them in cholinergic neurons of intact nematodes. First, we combined the red fluorescent protein pHuji with the blue-light gated ChR2(H134R), and second, the green fluorescent pHluorin combined with the novel red-shifted ChR ChrimsonSA. In both cases, fluorescence increases were observed after optical stimulation. Increase and subsequent decline of fluorescence was affected by mutations of proteins involved in SV fusion and endocytosis. These results establish pOpsicle as a non-invasive, all-optical approach to investigate different steps of the SV cycle.</description><identifier>ISSN: 1662-5102</identifier><identifier>EISSN: 1662-5102</identifier><identifier>DOI: 10.3389/fncel.2023.1120651</identifier><identifier>PMID: 37066081</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Acidification ; Caenorhabditis elegans ; Cell culture ; Electrophysiology ; Endocytosis ; exo- and endocytosis ; Fluorescence ; Microscopy ; Nematodes ; Neuroscience ; Neurotransmission ; optogenetics ; pH effects ; Protein turnover ; Proteins ; Red fluorescent protein ; synaptic plasticity</subject><ispartof>Frontiers in cellular neuroscience, 2023-03, Vol.17, p.1120651</ispartof><rights>Copyright © 2023 Seidenthal, Jánosi, Rosenkranz, Schuh, Elvers, Willoughby, Zhao and Gottschalk.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2023 Seidenthal, Jánosi, Rosenkranz, Schuh, Elvers, Willoughby, Zhao and Gottschalk. 2023 Seidenthal, Jánosi, Rosenkranz, Schuh, Elvers, Willoughby, Zhao and Gottschalk</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3</citedby><cites>FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2792712882/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2792712882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37066081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seidenthal, Marius</creatorcontrib><creatorcontrib>Jánosi, Barbara</creatorcontrib><creatorcontrib>Rosenkranz, Nils</creatorcontrib><creatorcontrib>Schuh, Noah</creatorcontrib><creatorcontrib>Elvers, Nora</creatorcontrib><creatorcontrib>Willoughby, Miles</creatorcontrib><creatorcontrib>Zhao, Xinda</creatorcontrib><creatorcontrib>Gottschalk, Alexander</creatorcontrib><title>pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity</title><title>Frontiers in cellular neuroscience</title><addtitle>Front Cell Neurosci</addtitle><description>pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increase. SV fusion, recycling and acidification can thus be tracked by tagging integral SV proteins with pH-sensitive proteins. Neurotransmission is generally activated by electrical stimulation, which is not feasible in small, intact animals. Previous approaches depended on distinct (sensory) stimuli, thus limiting the addressable neuron types. To overcome these limitations, we established an all-optical approach to stimulate and visualize SV fusion and recycling. We combined distinct pH-sensitive fluorescent proteins (inserted into the SV protein synaptogyrin) and light-gated channelrhodopsins (ChRs) for optical stimulation, overcoming optical crosstalk and thus enabling an all-optical approach. We generated two different variants of the pH-sensitive optogenetic reporter of vesicle recycling (pOpsicle) and tested them in cholinergic neurons of intact nematodes. First, we combined the red fluorescent protein pHuji with the blue-light gated ChR2(H134R), and second, the green fluorescent pHluorin combined with the novel red-shifted ChR ChrimsonSA. In both cases, fluorescence increases were observed after optical stimulation. Increase and subsequent decline of fluorescence was affected by mutations of proteins involved in SV fusion and endocytosis. These results establish pOpsicle as a non-invasive, all-optical approach to investigate different steps of the SV cycle.</description><subject>Acidification</subject><subject>Caenorhabditis elegans</subject><subject>Cell culture</subject><subject>Electrophysiology</subject><subject>Endocytosis</subject><subject>exo- and endocytosis</subject><subject>Fluorescence</subject><subject>Microscopy</subject><subject>Nematodes</subject><subject>Neuroscience</subject><subject>Neurotransmission</subject><subject>optogenetics</subject><subject>pH effects</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Red fluorescent protein</subject><subject>synaptic plasticity</subject><issn>1662-5102</issn><issn>1662-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9u1DAQxiMEoqXwAhyQJS5csvhPYidcUFUBrVSpFzhbjjPeeuW1g-1stS_Ec-LsLlXLySPPN78Zj7-qek_wirGu_2y8BreimLIVIRTzlryozgnntG4Jpi-fxGfVm5Q2GHPKm-51dcYE5hx35Lz6M91NyWoHX9ClR8q5OkzZauVQhCnEDBGlfcqwRSYsoVdLGu3gUFREeq-d9Wukw3awfomm6zqBTzbbHSDj5hAhafAZTTFksD6hB5vvUekT1uBhwW2Vt9PsVLbBo2CQhzkGX4ZQulBs3r-tXhnlErw7nRfVr-_ffl5d17d3P26uLm9r3fQi133Tq1bwkXHGiFENxYJjrFnTCtoSxQcsGAVGtFG9Fi0YYCMZWgakg9EwzS6qmyN3DGojp2i3Ku5lUFYeLkJcSxXz8nSJmQDTQT9y0jcDxgNmSrHSzgjKewaF9fXImuZhC-OygqjcM-jzjLf3ch12kuDyZW1DC-HTiRDD7xlSlltbVumc8hDmJGmHaUNpK5oi_fifdBPmWFZYVKKngtCuW4D0qNIxpBTBPE5DsFw8JQ-ekoun5MlTpejD03c8lvwzEfsL2RDNQQ</recordid><startdate>20230331</startdate><enddate>20230331</enddate><creator>Seidenthal, Marius</creator><creator>Jánosi, Barbara</creator><creator>Rosenkranz, Nils</creator><creator>Schuh, Noah</creator><creator>Elvers, Nora</creator><creator>Willoughby, Miles</creator><creator>Zhao, Xinda</creator><creator>Gottschalk, Alexander</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230331</creationdate><title>pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity</title><author>Seidenthal, Marius ; Jánosi, Barbara ; Rosenkranz, Nils ; Schuh, Noah ; Elvers, Nora ; Willoughby, Miles ; Zhao, Xinda ; Gottschalk, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidification</topic><topic>Caenorhabditis elegans</topic><topic>Cell culture</topic><topic>Electrophysiology</topic><topic>Endocytosis</topic><topic>exo- and endocytosis</topic><topic>Fluorescence</topic><topic>Microscopy</topic><topic>Nematodes</topic><topic>Neuroscience</topic><topic>Neurotransmission</topic><topic>optogenetics</topic><topic>pH effects</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Red fluorescent protein</topic><topic>synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seidenthal, Marius</creatorcontrib><creatorcontrib>Jánosi, Barbara</creatorcontrib><creatorcontrib>Rosenkranz, Nils</creatorcontrib><creatorcontrib>Schuh, Noah</creatorcontrib><creatorcontrib>Elvers, Nora</creatorcontrib><creatorcontrib>Willoughby, Miles</creatorcontrib><creatorcontrib>Zhao, Xinda</creatorcontrib><creatorcontrib>Gottschalk, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seidenthal, Marius</au><au>Jánosi, Barbara</au><au>Rosenkranz, Nils</au><au>Schuh, Noah</au><au>Elvers, Nora</au><au>Willoughby, Miles</au><au>Zhao, Xinda</au><au>Gottschalk, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity</atitle><jtitle>Frontiers in cellular neuroscience</jtitle><addtitle>Front Cell Neurosci</addtitle><date>2023-03-31</date><risdate>2023</risdate><volume>17</volume><spage>1120651</spage><pages>1120651-</pages><issn>1662-5102</issn><eissn>1662-5102</eissn><abstract>pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increase. SV fusion, recycling and acidification can thus be tracked by tagging integral SV proteins with pH-sensitive proteins. Neurotransmission is generally activated by electrical stimulation, which is not feasible in small, intact animals. Previous approaches depended on distinct (sensory) stimuli, thus limiting the addressable neuron types. To overcome these limitations, we established an all-optical approach to stimulate and visualize SV fusion and recycling. We combined distinct pH-sensitive fluorescent proteins (inserted into the SV protein synaptogyrin) and light-gated channelrhodopsins (ChRs) for optical stimulation, overcoming optical crosstalk and thus enabling an all-optical approach. We generated two different variants of the pH-sensitive optogenetic reporter of vesicle recycling (pOpsicle) and tested them in cholinergic neurons of intact nematodes. First, we combined the red fluorescent protein pHuji with the blue-light gated ChR2(H134R), and second, the green fluorescent pHluorin combined with the novel red-shifted ChR ChrimsonSA. In both cases, fluorescence increases were observed after optical stimulation. Increase and subsequent decline of fluorescence was affected by mutations of proteins involved in SV fusion and endocytosis. These results establish pOpsicle as a non-invasive, all-optical approach to investigate different steps of the SV cycle.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>37066081</pmid><doi>10.3389/fncel.2023.1120651</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5102
ispartof Frontiers in cellular neuroscience, 2023-03, Vol.17, p.1120651
issn 1662-5102
1662-5102
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_037ef8e9d6194b00b03aa3600f72693e
source Open Access: PubMed Central; Publicly Available Content Database
subjects Acidification
Caenorhabditis elegans
Cell culture
Electrophysiology
Endocytosis
exo- and endocytosis
Fluorescence
Microscopy
Nematodes
Neuroscience
Neurotransmission
optogenetics
pH effects
Protein turnover
Proteins
Red fluorescent protein
synaptic plasticity
title pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pOpsicle:%20An%20all-optical%20reporter%20system%20for%20synaptic%20vesicle%20recycling%20combining%20pH-sensitive%20fluorescent%20proteins%20with%20optogenetic%20manipulation%20of%20neuronal%20activity&rft.jtitle=Frontiers%20in%20cellular%20neuroscience&rft.au=Seidenthal,%20Marius&rft.date=2023-03-31&rft.volume=17&rft.spage=1120651&rft.pages=1120651-&rft.issn=1662-5102&rft.eissn=1662-5102&rft_id=info:doi/10.3389/fncel.2023.1120651&rft_dat=%3Cproquest_doaj_%3E2802422574%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792712882&rft_id=info:pmid/37066081&rfr_iscdi=true