Loading…
pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity
pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increa...
Saved in:
Published in: | Frontiers in cellular neuroscience 2023-03, Vol.17, p.1120651 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3 |
container_end_page | |
container_issue | |
container_start_page | 1120651 |
container_title | Frontiers in cellular neuroscience |
container_volume | 17 |
creator | Seidenthal, Marius Jánosi, Barbara Rosenkranz, Nils Schuh, Noah Elvers, Nora Willoughby, Miles Zhao, Xinda Gottschalk, Alexander |
description | pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increase. SV fusion, recycling and acidification can thus be tracked by tagging integral SV proteins with pH-sensitive proteins. Neurotransmission is generally activated by electrical stimulation, which is not feasible in small, intact animals. Previous
approaches depended on distinct (sensory) stimuli, thus limiting the addressable neuron types. To overcome these limitations, we established an all-optical approach to stimulate and visualize SV fusion and recycling. We combined distinct pH-sensitive fluorescent proteins (inserted into the SV protein synaptogyrin) and light-gated channelrhodopsins (ChRs) for optical stimulation, overcoming optical crosstalk and thus enabling an all-optical approach. We generated two different variants of the pH-sensitive optogenetic reporter of vesicle recycling (pOpsicle) and tested them in cholinergic neurons of intact
nematodes. First, we combined the red fluorescent protein pHuji with the blue-light gated ChR2(H134R), and second, the green fluorescent pHluorin combined with the novel red-shifted ChR ChrimsonSA. In both cases, fluorescence increases were observed after optical stimulation. Increase and subsequent decline of fluorescence was affected by mutations of proteins involved in SV fusion and endocytosis. These results establish pOpsicle as a non-invasive, all-optical approach to investigate different steps of the SV cycle. |
doi_str_mv | 10.3389/fncel.2023.1120651 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_037ef8e9d6194b00b03aa3600f72693e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_037ef8e9d6194b00b03aa3600f72693e</doaj_id><sourcerecordid>2802422574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3</originalsourceid><addsrcrecordid>eNpdks9u1DAQxiMEoqXwAhyQJS5csvhPYidcUFUBrVSpFzhbjjPeeuW1g-1stS_Ec-LsLlXLySPPN78Zj7-qek_wirGu_2y8BreimLIVIRTzlryozgnntG4Jpi-fxGfVm5Q2GHPKm-51dcYE5hx35Lz6M91NyWoHX9ClR8q5OkzZauVQhCnEDBGlfcqwRSYsoVdLGu3gUFREeq-d9Wukw3awfomm6zqBTzbbHSDj5hAhafAZTTFksD6hB5vvUekT1uBhwW2Vt9PsVLbBo2CQhzkGX4ZQulBs3r-tXhnlErw7nRfVr-_ffl5d17d3P26uLm9r3fQi133Tq1bwkXHGiFENxYJjrFnTCtoSxQcsGAVGtFG9Fi0YYCMZWgakg9EwzS6qmyN3DGojp2i3Ku5lUFYeLkJcSxXz8nSJmQDTQT9y0jcDxgNmSrHSzgjKewaF9fXImuZhC-OygqjcM-jzjLf3ch12kuDyZW1DC-HTiRDD7xlSlltbVumc8hDmJGmHaUNpK5oi_fifdBPmWFZYVKKngtCuW4D0qNIxpBTBPE5DsFw8JQ-ekoun5MlTpejD03c8lvwzEfsL2RDNQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792712882</pqid></control><display><type>article</type><title>pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Seidenthal, Marius ; Jánosi, Barbara ; Rosenkranz, Nils ; Schuh, Noah ; Elvers, Nora ; Willoughby, Miles ; Zhao, Xinda ; Gottschalk, Alexander</creator><creatorcontrib>Seidenthal, Marius ; Jánosi, Barbara ; Rosenkranz, Nils ; Schuh, Noah ; Elvers, Nora ; Willoughby, Miles ; Zhao, Xinda ; Gottschalk, Alexander</creatorcontrib><description>pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increase. SV fusion, recycling and acidification can thus be tracked by tagging integral SV proteins with pH-sensitive proteins. Neurotransmission is generally activated by electrical stimulation, which is not feasible in small, intact animals. Previous
approaches depended on distinct (sensory) stimuli, thus limiting the addressable neuron types. To overcome these limitations, we established an all-optical approach to stimulate and visualize SV fusion and recycling. We combined distinct pH-sensitive fluorescent proteins (inserted into the SV protein synaptogyrin) and light-gated channelrhodopsins (ChRs) for optical stimulation, overcoming optical crosstalk and thus enabling an all-optical approach. We generated two different variants of the pH-sensitive optogenetic reporter of vesicle recycling (pOpsicle) and tested them in cholinergic neurons of intact
nematodes. First, we combined the red fluorescent protein pHuji with the blue-light gated ChR2(H134R), and second, the green fluorescent pHluorin combined with the novel red-shifted ChR ChrimsonSA. In both cases, fluorescence increases were observed after optical stimulation. Increase and subsequent decline of fluorescence was affected by mutations of proteins involved in SV fusion and endocytosis. These results establish pOpsicle as a non-invasive, all-optical approach to investigate different steps of the SV cycle.</description><identifier>ISSN: 1662-5102</identifier><identifier>EISSN: 1662-5102</identifier><identifier>DOI: 10.3389/fncel.2023.1120651</identifier><identifier>PMID: 37066081</identifier><language>eng</language><publisher>Switzerland: Frontiers Research Foundation</publisher><subject>Acidification ; Caenorhabditis elegans ; Cell culture ; Electrophysiology ; Endocytosis ; exo- and endocytosis ; Fluorescence ; Microscopy ; Nematodes ; Neuroscience ; Neurotransmission ; optogenetics ; pH effects ; Protein turnover ; Proteins ; Red fluorescent protein ; synaptic plasticity</subject><ispartof>Frontiers in cellular neuroscience, 2023-03, Vol.17, p.1120651</ispartof><rights>Copyright © 2023 Seidenthal, Jánosi, Rosenkranz, Schuh, Elvers, Willoughby, Zhao and Gottschalk.</rights><rights>2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2023 Seidenthal, Jánosi, Rosenkranz, Schuh, Elvers, Willoughby, Zhao and Gottschalk. 2023 Seidenthal, Jánosi, Rosenkranz, Schuh, Elvers, Willoughby, Zhao and Gottschalk</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3</citedby><cites>FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2792712882/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2792712882?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37066081$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Seidenthal, Marius</creatorcontrib><creatorcontrib>Jánosi, Barbara</creatorcontrib><creatorcontrib>Rosenkranz, Nils</creatorcontrib><creatorcontrib>Schuh, Noah</creatorcontrib><creatorcontrib>Elvers, Nora</creatorcontrib><creatorcontrib>Willoughby, Miles</creatorcontrib><creatorcontrib>Zhao, Xinda</creatorcontrib><creatorcontrib>Gottschalk, Alexander</creatorcontrib><title>pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity</title><title>Frontiers in cellular neuroscience</title><addtitle>Front Cell Neurosci</addtitle><description>pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increase. SV fusion, recycling and acidification can thus be tracked by tagging integral SV proteins with pH-sensitive proteins. Neurotransmission is generally activated by electrical stimulation, which is not feasible in small, intact animals. Previous
approaches depended on distinct (sensory) stimuli, thus limiting the addressable neuron types. To overcome these limitations, we established an all-optical approach to stimulate and visualize SV fusion and recycling. We combined distinct pH-sensitive fluorescent proteins (inserted into the SV protein synaptogyrin) and light-gated channelrhodopsins (ChRs) for optical stimulation, overcoming optical crosstalk and thus enabling an all-optical approach. We generated two different variants of the pH-sensitive optogenetic reporter of vesicle recycling (pOpsicle) and tested them in cholinergic neurons of intact
nematodes. First, we combined the red fluorescent protein pHuji with the blue-light gated ChR2(H134R), and second, the green fluorescent pHluorin combined with the novel red-shifted ChR ChrimsonSA. In both cases, fluorescence increases were observed after optical stimulation. Increase and subsequent decline of fluorescence was affected by mutations of proteins involved in SV fusion and endocytosis. These results establish pOpsicle as a non-invasive, all-optical approach to investigate different steps of the SV cycle.</description><subject>Acidification</subject><subject>Caenorhabditis elegans</subject><subject>Cell culture</subject><subject>Electrophysiology</subject><subject>Endocytosis</subject><subject>exo- and endocytosis</subject><subject>Fluorescence</subject><subject>Microscopy</subject><subject>Nematodes</subject><subject>Neuroscience</subject><subject>Neurotransmission</subject><subject>optogenetics</subject><subject>pH effects</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Red fluorescent protein</subject><subject>synaptic plasticity</subject><issn>1662-5102</issn><issn>1662-5102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdks9u1DAQxiMEoqXwAhyQJS5csvhPYidcUFUBrVSpFzhbjjPeeuW1g-1stS_Ec-LsLlXLySPPN78Zj7-qek_wirGu_2y8BreimLIVIRTzlryozgnntG4Jpi-fxGfVm5Q2GHPKm-51dcYE5hx35Lz6M91NyWoHX9ClR8q5OkzZauVQhCnEDBGlfcqwRSYsoVdLGu3gUFREeq-d9Wukw3awfomm6zqBTzbbHSDj5hAhafAZTTFksD6hB5vvUekT1uBhwW2Vt9PsVLbBo2CQhzkGX4ZQulBs3r-tXhnlErw7nRfVr-_ffl5d17d3P26uLm9r3fQi133Tq1bwkXHGiFENxYJjrFnTCtoSxQcsGAVGtFG9Fi0YYCMZWgakg9EwzS6qmyN3DGojp2i3Ku5lUFYeLkJcSxXz8nSJmQDTQT9y0jcDxgNmSrHSzgjKewaF9fXImuZhC-OygqjcM-jzjLf3ch12kuDyZW1DC-HTiRDD7xlSlltbVumc8hDmJGmHaUNpK5oi_fifdBPmWFZYVKKngtCuW4D0qNIxpBTBPE5DsFw8JQ-ekoun5MlTpejD03c8lvwzEfsL2RDNQQ</recordid><startdate>20230331</startdate><enddate>20230331</enddate><creator>Seidenthal, Marius</creator><creator>Jánosi, Barbara</creator><creator>Rosenkranz, Nils</creator><creator>Schuh, Noah</creator><creator>Elvers, Nora</creator><creator>Willoughby, Miles</creator><creator>Zhao, Xinda</creator><creator>Gottschalk, Alexander</creator><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230331</creationdate><title>pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity</title><author>Seidenthal, Marius ; Jánosi, Barbara ; Rosenkranz, Nils ; Schuh, Noah ; Elvers, Nora ; Willoughby, Miles ; Zhao, Xinda ; Gottschalk, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acidification</topic><topic>Caenorhabditis elegans</topic><topic>Cell culture</topic><topic>Electrophysiology</topic><topic>Endocytosis</topic><topic>exo- and endocytosis</topic><topic>Fluorescence</topic><topic>Microscopy</topic><topic>Nematodes</topic><topic>Neuroscience</topic><topic>Neurotransmission</topic><topic>optogenetics</topic><topic>pH effects</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Red fluorescent protein</topic><topic>synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seidenthal, Marius</creatorcontrib><creatorcontrib>Jánosi, Barbara</creatorcontrib><creatorcontrib>Rosenkranz, Nils</creatorcontrib><creatorcontrib>Schuh, Noah</creatorcontrib><creatorcontrib>Elvers, Nora</creatorcontrib><creatorcontrib>Willoughby, Miles</creatorcontrib><creatorcontrib>Zhao, Xinda</creatorcontrib><creatorcontrib>Gottschalk, Alexander</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seidenthal, Marius</au><au>Jánosi, Barbara</au><au>Rosenkranz, Nils</au><au>Schuh, Noah</au><au>Elvers, Nora</au><au>Willoughby, Miles</au><au>Zhao, Xinda</au><au>Gottschalk, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity</atitle><jtitle>Frontiers in cellular neuroscience</jtitle><addtitle>Front Cell Neurosci</addtitle><date>2023-03-31</date><risdate>2023</risdate><volume>17</volume><spage>1120651</spage><pages>1120651-</pages><issn>1662-5102</issn><eissn>1662-5102</eissn><abstract>pH-sensitive fluorescent proteins are widely used to study synaptic vesicle (SV) fusion and recycling. When targeted to the lumen of SVs, fluorescence of these proteins is quenched by the acidic pH. Following SV fusion, they are exposed to extracellular neutral pH, resulting in a fluorescence increase. SV fusion, recycling and acidification can thus be tracked by tagging integral SV proteins with pH-sensitive proteins. Neurotransmission is generally activated by electrical stimulation, which is not feasible in small, intact animals. Previous
approaches depended on distinct (sensory) stimuli, thus limiting the addressable neuron types. To overcome these limitations, we established an all-optical approach to stimulate and visualize SV fusion and recycling. We combined distinct pH-sensitive fluorescent proteins (inserted into the SV protein synaptogyrin) and light-gated channelrhodopsins (ChRs) for optical stimulation, overcoming optical crosstalk and thus enabling an all-optical approach. We generated two different variants of the pH-sensitive optogenetic reporter of vesicle recycling (pOpsicle) and tested them in cholinergic neurons of intact
nematodes. First, we combined the red fluorescent protein pHuji with the blue-light gated ChR2(H134R), and second, the green fluorescent pHluorin combined with the novel red-shifted ChR ChrimsonSA. In both cases, fluorescence increases were observed after optical stimulation. Increase and subsequent decline of fluorescence was affected by mutations of proteins involved in SV fusion and endocytosis. These results establish pOpsicle as a non-invasive, all-optical approach to investigate different steps of the SV cycle.</abstract><cop>Switzerland</cop><pub>Frontiers Research Foundation</pub><pmid>37066081</pmid><doi>10.3389/fncel.2023.1120651</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5102 |
ispartof | Frontiers in cellular neuroscience, 2023-03, Vol.17, p.1120651 |
issn | 1662-5102 1662-5102 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_037ef8e9d6194b00b03aa3600f72693e |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | Acidification Caenorhabditis elegans Cell culture Electrophysiology Endocytosis exo- and endocytosis Fluorescence Microscopy Nematodes Neuroscience Neurotransmission optogenetics pH effects Protein turnover Proteins Red fluorescent protein synaptic plasticity |
title | pOpsicle: An all-optical reporter system for synaptic vesicle recycling combining pH-sensitive fluorescent proteins with optogenetic manipulation of neuronal activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pOpsicle:%20An%20all-optical%20reporter%20system%20for%20synaptic%20vesicle%20recycling%20combining%20pH-sensitive%20fluorescent%20proteins%20with%20optogenetic%20manipulation%20of%20neuronal%20activity&rft.jtitle=Frontiers%20in%20cellular%20neuroscience&rft.au=Seidenthal,%20Marius&rft.date=2023-03-31&rft.volume=17&rft.spage=1120651&rft.pages=1120651-&rft.issn=1662-5102&rft.eissn=1662-5102&rft_id=info:doi/10.3389/fncel.2023.1120651&rft_dat=%3Cproquest_doaj_%3E2802422574%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c497t-949a576d36331fa4207600c3457251a6b0732e31cfa9c75efe3d1b53e18edf3c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792712882&rft_id=info:pmid/37066081&rfr_iscdi=true |