Loading…

Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs

Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provid...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ. Computer science 2021-07, Vol.7, p.e622, Article e622
Main Authors: Shinde, Sumeet, Tupe-Waghmare, Priyanka, Chougule, Tanay, Saini, Jitender, Ingalhalikar, Madhura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383
cites cdi_FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383
container_end_page
container_issue
container_start_page e622
container_title PeerJ. Computer science
container_volume 7
creator Shinde, Sumeet
Tupe-Waghmare, Priyanka
Chougule, Tanay
Saini, Jitender
Ingalhalikar, Madhura
description Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provide a coarse localization that may not be able to capture subtle abnormalities in medical images. To alleviate this, our work proposes a technique called high resolution class activation mapping (HR-CAMs) that can provide enhanced visual explainability to the CNN models. HR-CAMs fuse feature maps by training a network using the input from multiple layers of a trained CNN, thus gaining information from every layer that can localize abnormalities with greater details in original image resolution. The technique is validated qualitatively and quantitatively on a simulated dataset of 8,000 images followed by applications on multiple image analysis tasks that include (1) skin lesion classification (ISIC open dataset-25,331 cases) and (2) predicting bone fractures (MURA open dataset-40,561 images) (3) predicting Parkinson's disease (PD) from neuromelanin sensitive MRI (small cohort-80 subjects). We demonstrate that our model creates clinically interpretable subject specific high resolution discriminative localizations when compared to widely used CAMs and Gradient-CAMs. HR-CAMs provide finer delineation of abnormalities thus facilitating superior explainability to CNNs as has been demonstrated from its rigorous validation.
doi_str_mv 10.7717/peerj-cs.622
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_038b0a0291694ef897af851610c7f346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668445631</galeid><doaj_id>oai_doaj_org_article_038b0a0291694ef897af851610c7f346</doaj_id><sourcerecordid>A668445631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383</originalsourceid><addsrcrecordid>eNptkktv1DAQgCMEolXpjTOKxAUksvgZ2xekasVjpaogHmdrYjtZr5J4sZNC-fV4d0vpIuyD7fE3n-XRFMVTjBZCYPF661zcVCYtakIeFKeEirriSpGH9_YnxXlKG4QQ5jgP9bg4oYwSwhU9LYZP0VlvJn_tShhtaX0y0Q9-hH2oDwZ6_ysfwliGttzCtA596G7KOfmxK9e-W5fRpdDPe8T0kFIJO98hZ4BtKn_4aV0ur67Sk-JRC31y57frWfHt3duvyw_V5cf3q-XFZWW4UFMluKkxdwhZTK3kjFFMW0WNJVY4wiywBpAVyDaQw07JmlPWNJYAcEKopGfF6uC1ATZ6mz8E8UYH8HofCLHTECdveqcRlQ0CRBSuFXOtVAJayXGNkREtZXV2vTm4tnMzOGvcOEXoj6THN6Nf6y5ca0kUVWQneHEriOH77NKkh1xk1_cwujAnTTivqeREoow-_wfdhDmOuVQ7CjMkpVB_qQ7yB_zYhvyu2Un1RV1LxrIPZ2rxHypP6wZvwuhan-NHCS-PEjIzuZ9TB3NKevXl8zH76sCaGFKKrr2rB0Z615l635naJJ07M-PP7tfwDv7Th_Q3unHfDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551408879</pqid></control><display><type>article</type><title>Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Shinde, Sumeet ; Tupe-Waghmare, Priyanka ; Chougule, Tanay ; Saini, Jitender ; Ingalhalikar, Madhura</creator><creatorcontrib>Shinde, Sumeet ; Tupe-Waghmare, Priyanka ; Chougule, Tanay ; Saini, Jitender ; Ingalhalikar, Madhura</creatorcontrib><description>Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provide a coarse localization that may not be able to capture subtle abnormalities in medical images. To alleviate this, our work proposes a technique called high resolution class activation mapping (HR-CAMs) that can provide enhanced visual explainability to the CNN models. HR-CAMs fuse feature maps by training a network using the input from multiple layers of a trained CNN, thus gaining information from every layer that can localize abnormalities with greater details in original image resolution. The technique is validated qualitatively and quantitatively on a simulated dataset of 8,000 images followed by applications on multiple image analysis tasks that include (1) skin lesion classification (ISIC open dataset-25,331 cases) and (2) predicting bone fractures (MURA open dataset-40,561 images) (3) predicting Parkinson's disease (PD) from neuromelanin sensitive MRI (small cohort-80 subjects). We demonstrate that our model creates clinically interpretable subject specific high resolution discriminative localizations when compared to widely used CAMs and Gradient-CAMs. HR-CAMs provide finer delineation of abnormalities thus facilitating superior explainability to CNNs as has been demonstrated from its rigorous validation.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.622</identifier><identifier>PMID: 34322593</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Abnormalities ; Archives &amp; records ; Artificial Intelligence ; Bioinformatics ; Cable television broadcasting industry ; Class activation maps ; Computational Biology ; Datasets ; Dermatology ; Discriminative ; Feature extraction ; Feature maps ; Fractures ; High resolution ; Image analysis ; Image classification ; Image resolution ; ISIC ; Localization ; Magnetic resonance imaging ; Medical imaging ; Medical imaging equipment ; Melanoma ; MURA ; Parkinson's disease</subject><ispartof>PeerJ. Computer science, 2021-07, Vol.7, p.e622, Article e622</ispartof><rights>2021 Shinde et al.</rights><rights>COPYRIGHT 2021 PeerJ. Ltd.</rights><rights>2021 Shinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Shinde et al. 2021 Shinde et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383</citedby><cites>FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2551408879/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2551408879?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34322593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shinde, Sumeet</creatorcontrib><creatorcontrib>Tupe-Waghmare, Priyanka</creatorcontrib><creatorcontrib>Chougule, Tanay</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Ingalhalikar, Madhura</creatorcontrib><title>Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs</title><title>PeerJ. Computer science</title><addtitle>PeerJ Comput Sci</addtitle><description>Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provide a coarse localization that may not be able to capture subtle abnormalities in medical images. To alleviate this, our work proposes a technique called high resolution class activation mapping (HR-CAMs) that can provide enhanced visual explainability to the CNN models. HR-CAMs fuse feature maps by training a network using the input from multiple layers of a trained CNN, thus gaining information from every layer that can localize abnormalities with greater details in original image resolution. The technique is validated qualitatively and quantitatively on a simulated dataset of 8,000 images followed by applications on multiple image analysis tasks that include (1) skin lesion classification (ISIC open dataset-25,331 cases) and (2) predicting bone fractures (MURA open dataset-40,561 images) (3) predicting Parkinson's disease (PD) from neuromelanin sensitive MRI (small cohort-80 subjects). We demonstrate that our model creates clinically interpretable subject specific high resolution discriminative localizations when compared to widely used CAMs and Gradient-CAMs. HR-CAMs provide finer delineation of abnormalities thus facilitating superior explainability to CNNs as has been demonstrated from its rigorous validation.</description><subject>Abnormalities</subject><subject>Archives &amp; records</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Cable television broadcasting industry</subject><subject>Class activation maps</subject><subject>Computational Biology</subject><subject>Datasets</subject><subject>Dermatology</subject><subject>Discriminative</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Fractures</subject><subject>High resolution</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image resolution</subject><subject>ISIC</subject><subject>Localization</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Melanoma</subject><subject>MURA</subject><subject>Parkinson's disease</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAQgCMEolXpjTOKxAUksvgZ2xekasVjpaogHmdrYjtZr5J4sZNC-fV4d0vpIuyD7fE3n-XRFMVTjBZCYPF661zcVCYtakIeFKeEirriSpGH9_YnxXlKG4QQ5jgP9bg4oYwSwhU9LYZP0VlvJn_tShhtaX0y0Q9-hH2oDwZ6_ysfwliGttzCtA596G7KOfmxK9e-W5fRpdDPe8T0kFIJO98hZ4BtKn_4aV0ur67Sk-JRC31y57frWfHt3duvyw_V5cf3q-XFZWW4UFMluKkxdwhZTK3kjFFMW0WNJVY4wiywBpAVyDaQw07JmlPWNJYAcEKopGfF6uC1ATZ6mz8E8UYH8HofCLHTECdveqcRlQ0CRBSuFXOtVAJayXGNkREtZXV2vTm4tnMzOGvcOEXoj6THN6Nf6y5ca0kUVWQneHEriOH77NKkh1xk1_cwujAnTTivqeREoow-_wfdhDmOuVQ7CjMkpVB_qQ7yB_zYhvyu2Un1RV1LxrIPZ2rxHypP6wZvwuhan-NHCS-PEjIzuZ9TB3NKevXl8zH76sCaGFKKrr2rB0Z615l635naJJ07M-PP7tfwDv7Th_Q3unHfDQ</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Shinde, Sumeet</creator><creator>Tupe-Waghmare, Priyanka</creator><creator>Chougule, Tanay</creator><creator>Saini, Jitender</creator><creator>Ingalhalikar, Madhura</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210714</creationdate><title>Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs</title><author>Shinde, Sumeet ; Tupe-Waghmare, Priyanka ; Chougule, Tanay ; Saini, Jitender ; Ingalhalikar, Madhura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Archives &amp; records</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Cable television broadcasting industry</topic><topic>Class activation maps</topic><topic>Computational Biology</topic><topic>Datasets</topic><topic>Dermatology</topic><topic>Discriminative</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Fractures</topic><topic>High resolution</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image resolution</topic><topic>ISIC</topic><topic>Localization</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Melanoma</topic><topic>MURA</topic><topic>Parkinson's disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinde, Sumeet</creatorcontrib><creatorcontrib>Tupe-Waghmare, Priyanka</creatorcontrib><creatorcontrib>Chougule, Tanay</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Ingalhalikar, Madhura</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shinde, Sumeet</au><au>Tupe-Waghmare, Priyanka</au><au>Chougule, Tanay</au><au>Saini, Jitender</au><au>Ingalhalikar, Madhura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs</atitle><jtitle>PeerJ. Computer science</jtitle><addtitle>PeerJ Comput Sci</addtitle><date>2021-07-14</date><risdate>2021</risdate><volume>7</volume><spage>e622</spage><pages>e622-</pages><artnum>e622</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provide a coarse localization that may not be able to capture subtle abnormalities in medical images. To alleviate this, our work proposes a technique called high resolution class activation mapping (HR-CAMs) that can provide enhanced visual explainability to the CNN models. HR-CAMs fuse feature maps by training a network using the input from multiple layers of a trained CNN, thus gaining information from every layer that can localize abnormalities with greater details in original image resolution. The technique is validated qualitatively and quantitatively on a simulated dataset of 8,000 images followed by applications on multiple image analysis tasks that include (1) skin lesion classification (ISIC open dataset-25,331 cases) and (2) predicting bone fractures (MURA open dataset-40,561 images) (3) predicting Parkinson's disease (PD) from neuromelanin sensitive MRI (small cohort-80 subjects). We demonstrate that our model creates clinically interpretable subject specific high resolution discriminative localizations when compared to widely used CAMs and Gradient-CAMs. HR-CAMs provide finer delineation of abnormalities thus facilitating superior explainability to CNNs as has been demonstrated from its rigorous validation.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>34322593</pmid><doi>10.7717/peerj-cs.622</doi><tpages>e622</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2376-5992
ispartof PeerJ. Computer science, 2021-07, Vol.7, p.e622, Article e622
issn 2376-5992
2376-5992
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_038b0a0291694ef897af851610c7f346
source Publicly Available Content (ProQuest); PubMed Central
subjects Abnormalities
Archives & records
Artificial Intelligence
Bioinformatics
Cable television broadcasting industry
Class activation maps
Computational Biology
Datasets
Dermatology
Discriminative
Feature extraction
Feature maps
Fractures
High resolution
Image analysis
Image classification
Image resolution
ISIC
Localization
Magnetic resonance imaging
Medical imaging
Medical imaging equipment
Melanoma
MURA
Parkinson's disease
title Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20and%20discriminative%20localization%20of%20pathology%20using%20high%20resolution%20class%20activation%20maps%20with%20CNNs&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Shinde,%20Sumeet&rft.date=2021-07-14&rft.volume=7&rft.spage=e622&rft.pages=e622-&rft.artnum=e622&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.622&rft_dat=%3Cgale_doaj_%3EA668445631%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551408879&rft_id=info:pmid/34322593&rft_galeid=A668445631&rfr_iscdi=true