Loading…
Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs
Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provid...
Saved in:
Published in: | PeerJ. Computer science 2021-07, Vol.7, p.e622, Article e622 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383 |
---|---|
cites | cdi_FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383 |
container_end_page | |
container_issue | |
container_start_page | e622 |
container_title | PeerJ. Computer science |
container_volume | 7 |
creator | Shinde, Sumeet Tupe-Waghmare, Priyanka Chougule, Tanay Saini, Jitender Ingalhalikar, Madhura |
description | Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provide a coarse localization that may not be able to capture subtle abnormalities in medical images. To alleviate this, our work proposes a technique called high resolution class activation mapping (HR-CAMs) that can provide enhanced visual explainability to the CNN models.
HR-CAMs fuse feature maps by training a network using the input from multiple layers of a trained CNN, thus gaining information from every layer that can localize abnormalities with greater details in original image resolution. The technique is validated qualitatively and quantitatively on a simulated dataset of 8,000 images followed by applications on multiple image analysis tasks that include (1) skin lesion classification (ISIC open dataset-25,331 cases) and (2) predicting bone fractures (MURA open dataset-40,561 images) (3) predicting Parkinson's disease (PD) from neuromelanin sensitive MRI (small cohort-80 subjects).
We demonstrate that our model creates clinically interpretable subject specific high resolution discriminative localizations when compared to widely used CAMs and Gradient-CAMs.
HR-CAMs provide finer delineation of abnormalities thus facilitating superior explainability to CNNs as has been demonstrated from its rigorous validation. |
doi_str_mv | 10.7717/peerj-cs.622 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_038b0a0291694ef897af851610c7f346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668445631</galeid><doaj_id>oai_doaj_org_article_038b0a0291694ef897af851610c7f346</doaj_id><sourcerecordid>A668445631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383</originalsourceid><addsrcrecordid>eNptkktv1DAQgCMEolXpjTOKxAUksvgZ2xekasVjpaogHmdrYjtZr5J4sZNC-fV4d0vpIuyD7fE3n-XRFMVTjBZCYPF661zcVCYtakIeFKeEirriSpGH9_YnxXlKG4QQ5jgP9bg4oYwSwhU9LYZP0VlvJn_tShhtaX0y0Q9-hH2oDwZ6_ysfwliGttzCtA596G7KOfmxK9e-W5fRpdDPe8T0kFIJO98hZ4BtKn_4aV0ur67Sk-JRC31y57frWfHt3duvyw_V5cf3q-XFZWW4UFMluKkxdwhZTK3kjFFMW0WNJVY4wiywBpAVyDaQw07JmlPWNJYAcEKopGfF6uC1ATZ6mz8E8UYH8HofCLHTECdveqcRlQ0CRBSuFXOtVAJayXGNkREtZXV2vTm4tnMzOGvcOEXoj6THN6Nf6y5ca0kUVWQneHEriOH77NKkh1xk1_cwujAnTTivqeREoow-_wfdhDmOuVQ7CjMkpVB_qQ7yB_zYhvyu2Un1RV1LxrIPZ2rxHypP6wZvwuhan-NHCS-PEjIzuZ9TB3NKevXl8zH76sCaGFKKrr2rB0Z615l635naJJ07M-PP7tfwDv7Th_Q3unHfDQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551408879</pqid></control><display><type>article</type><title>Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Shinde, Sumeet ; Tupe-Waghmare, Priyanka ; Chougule, Tanay ; Saini, Jitender ; Ingalhalikar, Madhura</creator><creatorcontrib>Shinde, Sumeet ; Tupe-Waghmare, Priyanka ; Chougule, Tanay ; Saini, Jitender ; Ingalhalikar, Madhura</creatorcontrib><description>Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provide a coarse localization that may not be able to capture subtle abnormalities in medical images. To alleviate this, our work proposes a technique called high resolution class activation mapping (HR-CAMs) that can provide enhanced visual explainability to the CNN models.
HR-CAMs fuse feature maps by training a network using the input from multiple layers of a trained CNN, thus gaining information from every layer that can localize abnormalities with greater details in original image resolution. The technique is validated qualitatively and quantitatively on a simulated dataset of 8,000 images followed by applications on multiple image analysis tasks that include (1) skin lesion classification (ISIC open dataset-25,331 cases) and (2) predicting bone fractures (MURA open dataset-40,561 images) (3) predicting Parkinson's disease (PD) from neuromelanin sensitive MRI (small cohort-80 subjects).
We demonstrate that our model creates clinically interpretable subject specific high resolution discriminative localizations when compared to widely used CAMs and Gradient-CAMs.
HR-CAMs provide finer delineation of abnormalities thus facilitating superior explainability to CNNs as has been demonstrated from its rigorous validation.</description><identifier>ISSN: 2376-5992</identifier><identifier>EISSN: 2376-5992</identifier><identifier>DOI: 10.7717/peerj-cs.622</identifier><identifier>PMID: 34322593</identifier><language>eng</language><publisher>United States: PeerJ. Ltd</publisher><subject>Abnormalities ; Archives & records ; Artificial Intelligence ; Bioinformatics ; Cable television broadcasting industry ; Class activation maps ; Computational Biology ; Datasets ; Dermatology ; Discriminative ; Feature extraction ; Feature maps ; Fractures ; High resolution ; Image analysis ; Image classification ; Image resolution ; ISIC ; Localization ; Magnetic resonance imaging ; Medical imaging ; Medical imaging equipment ; Melanoma ; MURA ; Parkinson's disease</subject><ispartof>PeerJ. Computer science, 2021-07, Vol.7, p.e622, Article e622</ispartof><rights>2021 Shinde et al.</rights><rights>COPYRIGHT 2021 PeerJ. Ltd.</rights><rights>2021 Shinde et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Shinde et al. 2021 Shinde et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383</citedby><cites>FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2551408879/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2551408879?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34322593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shinde, Sumeet</creatorcontrib><creatorcontrib>Tupe-Waghmare, Priyanka</creatorcontrib><creatorcontrib>Chougule, Tanay</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Ingalhalikar, Madhura</creatorcontrib><title>Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs</title><title>PeerJ. Computer science</title><addtitle>PeerJ Comput Sci</addtitle><description>Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provide a coarse localization that may not be able to capture subtle abnormalities in medical images. To alleviate this, our work proposes a technique called high resolution class activation mapping (HR-CAMs) that can provide enhanced visual explainability to the CNN models.
HR-CAMs fuse feature maps by training a network using the input from multiple layers of a trained CNN, thus gaining information from every layer that can localize abnormalities with greater details in original image resolution. The technique is validated qualitatively and quantitatively on a simulated dataset of 8,000 images followed by applications on multiple image analysis tasks that include (1) skin lesion classification (ISIC open dataset-25,331 cases) and (2) predicting bone fractures (MURA open dataset-40,561 images) (3) predicting Parkinson's disease (PD) from neuromelanin sensitive MRI (small cohort-80 subjects).
We demonstrate that our model creates clinically interpretable subject specific high resolution discriminative localizations when compared to widely used CAMs and Gradient-CAMs.
HR-CAMs provide finer delineation of abnormalities thus facilitating superior explainability to CNNs as has been demonstrated from its rigorous validation.</description><subject>Abnormalities</subject><subject>Archives & records</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Cable television broadcasting industry</subject><subject>Class activation maps</subject><subject>Computational Biology</subject><subject>Datasets</subject><subject>Dermatology</subject><subject>Discriminative</subject><subject>Feature extraction</subject><subject>Feature maps</subject><subject>Fractures</subject><subject>High resolution</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Image resolution</subject><subject>ISIC</subject><subject>Localization</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Melanoma</subject><subject>MURA</subject><subject>Parkinson's disease</subject><issn>2376-5992</issn><issn>2376-5992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAQgCMEolXpjTOKxAUksvgZ2xekasVjpaogHmdrYjtZr5J4sZNC-fV4d0vpIuyD7fE3n-XRFMVTjBZCYPF661zcVCYtakIeFKeEirriSpGH9_YnxXlKG4QQ5jgP9bg4oYwSwhU9LYZP0VlvJn_tShhtaX0y0Q9-hH2oDwZ6_ysfwliGttzCtA596G7KOfmxK9e-W5fRpdDPe8T0kFIJO98hZ4BtKn_4aV0ur67Sk-JRC31y57frWfHt3duvyw_V5cf3q-XFZWW4UFMluKkxdwhZTK3kjFFMW0WNJVY4wiywBpAVyDaQw07JmlPWNJYAcEKopGfF6uC1ATZ6mz8E8UYH8HofCLHTECdveqcRlQ0CRBSuFXOtVAJayXGNkREtZXV2vTm4tnMzOGvcOEXoj6THN6Nf6y5ca0kUVWQneHEriOH77NKkh1xk1_cwujAnTTivqeREoow-_wfdhDmOuVQ7CjMkpVB_qQ7yB_zYhvyu2Un1RV1LxrIPZ2rxHypP6wZvwuhan-NHCS-PEjIzuZ9TB3NKevXl8zH76sCaGFKKrr2rB0Z615l635naJJ07M-PP7tfwDv7Th_Q3unHfDQ</recordid><startdate>20210714</startdate><enddate>20210714</enddate><creator>Shinde, Sumeet</creator><creator>Tupe-Waghmare, Priyanka</creator><creator>Chougule, Tanay</creator><creator>Saini, Jitender</creator><creator>Ingalhalikar, Madhura</creator><general>PeerJ. Ltd</general><general>PeerJ, Inc</general><general>PeerJ Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7XB</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210714</creationdate><title>Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs</title><author>Shinde, Sumeet ; Tupe-Waghmare, Priyanka ; Chougule, Tanay ; Saini, Jitender ; Ingalhalikar, Madhura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abnormalities</topic><topic>Archives & records</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Cable television broadcasting industry</topic><topic>Class activation maps</topic><topic>Computational Biology</topic><topic>Datasets</topic><topic>Dermatology</topic><topic>Discriminative</topic><topic>Feature extraction</topic><topic>Feature maps</topic><topic>Fractures</topic><topic>High resolution</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Image resolution</topic><topic>ISIC</topic><topic>Localization</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Melanoma</topic><topic>MURA</topic><topic>Parkinson's disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shinde, Sumeet</creatorcontrib><creatorcontrib>Tupe-Waghmare, Priyanka</creatorcontrib><creatorcontrib>Chougule, Tanay</creatorcontrib><creatorcontrib>Saini, Jitender</creatorcontrib><creatorcontrib>Ingalhalikar, Madhura</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale in Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PeerJ. Computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shinde, Sumeet</au><au>Tupe-Waghmare, Priyanka</au><au>Chougule, Tanay</au><au>Saini, Jitender</au><au>Ingalhalikar, Madhura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs</atitle><jtitle>PeerJ. Computer science</jtitle><addtitle>PeerJ Comput Sci</addtitle><date>2021-07-14</date><risdate>2021</risdate><volume>7</volume><spage>e622</spage><pages>e622-</pages><artnum>e622</artnum><issn>2376-5992</issn><eissn>2376-5992</eissn><abstract>Existing class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provide a coarse localization that may not be able to capture subtle abnormalities in medical images. To alleviate this, our work proposes a technique called high resolution class activation mapping (HR-CAMs) that can provide enhanced visual explainability to the CNN models.
HR-CAMs fuse feature maps by training a network using the input from multiple layers of a trained CNN, thus gaining information from every layer that can localize abnormalities with greater details in original image resolution. The technique is validated qualitatively and quantitatively on a simulated dataset of 8,000 images followed by applications on multiple image analysis tasks that include (1) skin lesion classification (ISIC open dataset-25,331 cases) and (2) predicting bone fractures (MURA open dataset-40,561 images) (3) predicting Parkinson's disease (PD) from neuromelanin sensitive MRI (small cohort-80 subjects).
We demonstrate that our model creates clinically interpretable subject specific high resolution discriminative localizations when compared to widely used CAMs and Gradient-CAMs.
HR-CAMs provide finer delineation of abnormalities thus facilitating superior explainability to CNNs as has been demonstrated from its rigorous validation.</abstract><cop>United States</cop><pub>PeerJ. Ltd</pub><pmid>34322593</pmid><doi>10.7717/peerj-cs.622</doi><tpages>e622</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2376-5992 |
ispartof | PeerJ. Computer science, 2021-07, Vol.7, p.e622, Article e622 |
issn | 2376-5992 2376-5992 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_038b0a0291694ef897af851610c7f346 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Abnormalities Archives & records Artificial Intelligence Bioinformatics Cable television broadcasting industry Class activation maps Computational Biology Datasets Dermatology Discriminative Feature extraction Feature maps Fractures High resolution Image analysis Image classification Image resolution ISIC Localization Magnetic resonance imaging Medical imaging Medical imaging equipment Melanoma MURA Parkinson's disease |
title | Predictive and discriminative localization of pathology using high resolution class activation maps with CNNs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20and%20discriminative%20localization%20of%20pathology%20using%20high%20resolution%20class%20activation%20maps%20with%20CNNs&rft.jtitle=PeerJ.%20Computer%20science&rft.au=Shinde,%20Sumeet&rft.date=2021-07-14&rft.volume=7&rft.spage=e622&rft.pages=e622-&rft.artnum=e622&rft.issn=2376-5992&rft.eissn=2376-5992&rft_id=info:doi/10.7717/peerj-cs.622&rft_dat=%3Cgale_doaj_%3EA668445631%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c579t-75c615e00d13d8544313f93cd2d7e24da4ba0d70dbaf93e986534bbd2aa522383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551408879&rft_id=info:pmid/34322593&rft_galeid=A668445631&rfr_iscdi=true |