Loading…

Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model

Synthetic osteoinductive materials that mimic the human osteogenic niche have emerged as ideal candidates to address this area of unmet clinical need. In this study, we evaluated the osteoinductive potential in a rabbit orthotopic model of a magnesium-doped hydroxyapatite/type I collagen ​(MHA/Coll)...

Full description

Saved in:
Bibliographic Details
Published in:Materials today bio 2019-03, Vol.2, p.100005-100005, Article 100005
Main Authors: Minardi, S, Taraballi, F, Cabrera, F J, Van Eps, J, Wang, X, Gazze, S A, Fernandez-Mourev, Joseph S, Tampieri, A, Francis, L, Weiner, B K, Tasciotti, E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c471t-ab2b63e811f4a203a6c6af0fbaf9ac0e4693db18b3866e8d088b9b4bea2981673
cites cdi_FETCH-LOGICAL-c471t-ab2b63e811f4a203a6c6af0fbaf9ac0e4693db18b3866e8d088b9b4bea2981673
container_end_page 100005
container_issue
container_start_page 100005
container_title Materials today bio
container_volume 2
creator Minardi, S
Taraballi, F
Cabrera, F J
Van Eps, J
Wang, X
Gazze, S A
Fernandez-Mourev, Joseph S
Tampieri, A
Francis, L
Weiner, B K
Tasciotti, E
description Synthetic osteoinductive materials that mimic the human osteogenic niche have emerged as ideal candidates to address this area of unmet clinical need. In this study, we evaluated the osteoinductive potential in a rabbit orthotopic model of a magnesium-doped hydroxyapatite/type I collagen ​(MHA/Coll) composite. The composite was fabricated to exhibit a highly fibrous structure of carbonated MHA with 70% (±2.1) porosity and a Ca/P ratio of 1.5 (±0.03) as well as a diverse range of elasticity separated to two distinct stiffness peaks of low (2.35 ​± ​1.16 ​MPa) and higher (9.52 ​± ​2.10 ​MPa) Young's Modulus. Data suggested that these specific compositional and nanomechanical material properties induced the deposition of mineral phase, while modulating the expression of early and late osteogenic marker genes, in a 3D model using human bone marrow-derived mesenchymal stem cells (hBM-MSCs). When tested in the rabbit orthotopic model, MHA/Col1 scaffold induction of new trabecular bone mass was observed by DynaCT scan, only 2 weeks after implantation. Bone histomorphometry at 6 weeks revealed a significant amount of bone matrix formation. qPCR demonstrated MHA/Coll scaffold full cellularization and the expression of both osteogenesis-associated genes ( ) as well as hematopoietic ( ) and bone marrow stromal cell marker genes ( ). Altogether, these data provide ​evidence of the solid osteoinductive potential of MHA/Coll and its suitability for multiple approaches of bone regeneration.
doi_str_mv 10.1016/j.mtbio.2019.100005
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_039209af4d934f9fb8ec41ba0aa43a6b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_039209af4d934f9fb8ec41ba0aa43a6b</doaj_id><sourcerecordid>2376226311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-ab2b63e811f4a203a6c6af0fbaf9ac0e4693db18b3866e8d088b9b4bea2981673</originalsourceid><addsrcrecordid>eNpVkUtv3CAUhVHVqonS_IJKFctuZsJrsNlUaqM-IkXKJl2jC76ewbKNC0zU-fdlMmmUsAEdzv3uhUPIR87WnHF9Nayn4kJcC8ZNVeravCHnYmPYijGt3r44n5HLnIfqEI1RjJn35EwKvjFciXMyfAtxChOW4Onu0KX49wALlFDwysdxhC3O1MdpiblKtEvhATN1cUY6B79DmtDDEsp-rDVxpmGmQBM4FwqNqexiiUslT7HD8QN518OY8fJpvyC_f3y_v_61ur37eXP99XblVcPLCpxwWmLLea9AMAnaa-hZ76A34BkqbWTneOtkqzW2HWtbZ5xyCMK0XDfygtycuF2EwS4pTJAONkKwj0JMWwupvndEy6QRzECvOiNVb3rXolfcAQNQtbGrrC8n1rJ3E3Ye55JgfAV9fTOHnd3GB9swzbXhFfD5CZDinz3mYqeQPdafnTHusxWy0UJoyY9WebL6FHNO2D-34cweQ7eDfQzdHkO3p9Br1aeXEz7X_I9Y_gOj8a1g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376226311</pqid></control><display><type>article</type><title>Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model</title><source>ScienceDirect®</source><source>PubMed Central</source><creator>Minardi, S ; Taraballi, F ; Cabrera, F J ; Van Eps, J ; Wang, X ; Gazze, S A ; Fernandez-Mourev, Joseph S ; Tampieri, A ; Francis, L ; Weiner, B K ; Tasciotti, E</creator><creatorcontrib>Minardi, S ; Taraballi, F ; Cabrera, F J ; Van Eps, J ; Wang, X ; Gazze, S A ; Fernandez-Mourev, Joseph S ; Tampieri, A ; Francis, L ; Weiner, B K ; Tasciotti, E</creatorcontrib><description>Synthetic osteoinductive materials that mimic the human osteogenic niche have emerged as ideal candidates to address this area of unmet clinical need. In this study, we evaluated the osteoinductive potential in a rabbit orthotopic model of a magnesium-doped hydroxyapatite/type I collagen ​(MHA/Coll) composite. The composite was fabricated to exhibit a highly fibrous structure of carbonated MHA with 70% (±2.1) porosity and a Ca/P ratio of 1.5 (±0.03) as well as a diverse range of elasticity separated to two distinct stiffness peaks of low (2.35 ​± ​1.16 ​MPa) and higher (9.52 ​± ​2.10 ​MPa) Young's Modulus. Data suggested that these specific compositional and nanomechanical material properties induced the deposition of mineral phase, while modulating the expression of early and late osteogenic marker genes, in a 3D model using human bone marrow-derived mesenchymal stem cells (hBM-MSCs). When tested in the rabbit orthotopic model, MHA/Col1 scaffold induction of new trabecular bone mass was observed by DynaCT scan, only 2 weeks after implantation. Bone histomorphometry at 6 weeks revealed a significant amount of bone matrix formation. qPCR demonstrated MHA/Coll scaffold full cellularization and the expression of both osteogenesis-associated genes ( ) as well as hematopoietic ( ) and bone marrow stromal cell marker genes ( ). Altogether, these data provide ​evidence of the solid osteoinductive potential of MHA/Coll and its suitability for multiple approaches of bone regeneration.</description><identifier>ISSN: 2590-0064</identifier><identifier>EISSN: 2590-0064</identifier><identifier>DOI: 10.1016/j.mtbio.2019.100005</identifier><identifier>PMID: 32159142</identifier><language>eng</language><publisher>England: Elsevier</publisher><subject>Full-Length</subject><ispartof>Materials today bio, 2019-03, Vol.2, p.100005-100005, Article 100005</ispartof><rights>2019 The Authors.</rights><rights>2019 The Authors 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-ab2b63e811f4a203a6c6af0fbaf9ac0e4693db18b3866e8d088b9b4bea2981673</citedby><cites>FETCH-LOGICAL-c471t-ab2b63e811f4a203a6c6af0fbaf9ac0e4693db18b3866e8d088b9b4bea2981673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061691/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061691/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32159142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Minardi, S</creatorcontrib><creatorcontrib>Taraballi, F</creatorcontrib><creatorcontrib>Cabrera, F J</creatorcontrib><creatorcontrib>Van Eps, J</creatorcontrib><creatorcontrib>Wang, X</creatorcontrib><creatorcontrib>Gazze, S A</creatorcontrib><creatorcontrib>Fernandez-Mourev, Joseph S</creatorcontrib><creatorcontrib>Tampieri, A</creatorcontrib><creatorcontrib>Francis, L</creatorcontrib><creatorcontrib>Weiner, B K</creatorcontrib><creatorcontrib>Tasciotti, E</creatorcontrib><title>Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model</title><title>Materials today bio</title><addtitle>Mater Today Bio</addtitle><description>Synthetic osteoinductive materials that mimic the human osteogenic niche have emerged as ideal candidates to address this area of unmet clinical need. In this study, we evaluated the osteoinductive potential in a rabbit orthotopic model of a magnesium-doped hydroxyapatite/type I collagen ​(MHA/Coll) composite. The composite was fabricated to exhibit a highly fibrous structure of carbonated MHA with 70% (±2.1) porosity and a Ca/P ratio of 1.5 (±0.03) as well as a diverse range of elasticity separated to two distinct stiffness peaks of low (2.35 ​± ​1.16 ​MPa) and higher (9.52 ​± ​2.10 ​MPa) Young's Modulus. Data suggested that these specific compositional and nanomechanical material properties induced the deposition of mineral phase, while modulating the expression of early and late osteogenic marker genes, in a 3D model using human bone marrow-derived mesenchymal stem cells (hBM-MSCs). When tested in the rabbit orthotopic model, MHA/Col1 scaffold induction of new trabecular bone mass was observed by DynaCT scan, only 2 weeks after implantation. Bone histomorphometry at 6 weeks revealed a significant amount of bone matrix formation. qPCR demonstrated MHA/Coll scaffold full cellularization and the expression of both osteogenesis-associated genes ( ) as well as hematopoietic ( ) and bone marrow stromal cell marker genes ( ). Altogether, these data provide ​evidence of the solid osteoinductive potential of MHA/Coll and its suitability for multiple approaches of bone regeneration.</description><subject>Full-Length</subject><issn>2590-0064</issn><issn>2590-0064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtv3CAUhVHVqonS_IJKFctuZsJrsNlUaqM-IkXKJl2jC76ewbKNC0zU-fdlMmmUsAEdzv3uhUPIR87WnHF9Nayn4kJcC8ZNVeravCHnYmPYijGt3r44n5HLnIfqEI1RjJn35EwKvjFciXMyfAtxChOW4Onu0KX49wALlFDwysdxhC3O1MdpiblKtEvhATN1cUY6B79DmtDDEsp-rDVxpmGmQBM4FwqNqexiiUslT7HD8QN518OY8fJpvyC_f3y_v_61ur37eXP99XblVcPLCpxwWmLLea9AMAnaa-hZ76A34BkqbWTneOtkqzW2HWtbZ5xyCMK0XDfygtycuF2EwS4pTJAONkKwj0JMWwupvndEy6QRzECvOiNVb3rXolfcAQNQtbGrrC8n1rJ3E3Ye55JgfAV9fTOHnd3GB9swzbXhFfD5CZDinz3mYqeQPdafnTHusxWy0UJoyY9WebL6FHNO2D-34cweQ7eDfQzdHkO3p9Br1aeXEz7X_I9Y_gOj8a1g</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Minardi, S</creator><creator>Taraballi, F</creator><creator>Cabrera, F J</creator><creator>Van Eps, J</creator><creator>Wang, X</creator><creator>Gazze, S A</creator><creator>Fernandez-Mourev, Joseph S</creator><creator>Tampieri, A</creator><creator>Francis, L</creator><creator>Weiner, B K</creator><creator>Tasciotti, E</creator><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20190301</creationdate><title>Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model</title><author>Minardi, S ; Taraballi, F ; Cabrera, F J ; Van Eps, J ; Wang, X ; Gazze, S A ; Fernandez-Mourev, Joseph S ; Tampieri, A ; Francis, L ; Weiner, B K ; Tasciotti, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-ab2b63e811f4a203a6c6af0fbaf9ac0e4693db18b3866e8d088b9b4bea2981673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Full-Length</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minardi, S</creatorcontrib><creatorcontrib>Taraballi, F</creatorcontrib><creatorcontrib>Cabrera, F J</creatorcontrib><creatorcontrib>Van Eps, J</creatorcontrib><creatorcontrib>Wang, X</creatorcontrib><creatorcontrib>Gazze, S A</creatorcontrib><creatorcontrib>Fernandez-Mourev, Joseph S</creatorcontrib><creatorcontrib>Tampieri, A</creatorcontrib><creatorcontrib>Francis, L</creatorcontrib><creatorcontrib>Weiner, B K</creatorcontrib><creatorcontrib>Tasciotti, E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Materials today bio</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minardi, S</au><au>Taraballi, F</au><au>Cabrera, F J</au><au>Van Eps, J</au><au>Wang, X</au><au>Gazze, S A</au><au>Fernandez-Mourev, Joseph S</au><au>Tampieri, A</au><au>Francis, L</au><au>Weiner, B K</au><au>Tasciotti, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model</atitle><jtitle>Materials today bio</jtitle><addtitle>Mater Today Bio</addtitle><date>2019-03-01</date><risdate>2019</risdate><volume>2</volume><spage>100005</spage><epage>100005</epage><pages>100005-100005</pages><artnum>100005</artnum><issn>2590-0064</issn><eissn>2590-0064</eissn><abstract>Synthetic osteoinductive materials that mimic the human osteogenic niche have emerged as ideal candidates to address this area of unmet clinical need. In this study, we evaluated the osteoinductive potential in a rabbit orthotopic model of a magnesium-doped hydroxyapatite/type I collagen ​(MHA/Coll) composite. The composite was fabricated to exhibit a highly fibrous structure of carbonated MHA with 70% (±2.1) porosity and a Ca/P ratio of 1.5 (±0.03) as well as a diverse range of elasticity separated to two distinct stiffness peaks of low (2.35 ​± ​1.16 ​MPa) and higher (9.52 ​± ​2.10 ​MPa) Young's Modulus. Data suggested that these specific compositional and nanomechanical material properties induced the deposition of mineral phase, while modulating the expression of early and late osteogenic marker genes, in a 3D model using human bone marrow-derived mesenchymal stem cells (hBM-MSCs). When tested in the rabbit orthotopic model, MHA/Col1 scaffold induction of new trabecular bone mass was observed by DynaCT scan, only 2 weeks after implantation. Bone histomorphometry at 6 weeks revealed a significant amount of bone matrix formation. qPCR demonstrated MHA/Coll scaffold full cellularization and the expression of both osteogenesis-associated genes ( ) as well as hematopoietic ( ) and bone marrow stromal cell marker genes ( ). Altogether, these data provide ​evidence of the solid osteoinductive potential of MHA/Coll and its suitability for multiple approaches of bone regeneration.</abstract><cop>England</cop><pub>Elsevier</pub><pmid>32159142</pmid><doi>10.1016/j.mtbio.2019.100005</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2590-0064
ispartof Materials today bio, 2019-03, Vol.2, p.100005-100005, Article 100005
issn 2590-0064
2590-0064
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_039209af4d934f9fb8ec41ba0aa43a6b
source ScienceDirect®; PubMed Central
subjects Full-Length
title Biomimetic hydroxyapatite/collagen composite drives bone niche recapitulation in a rabbit orthotopic model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomimetic%20hydroxyapatite/collagen%20composite%20drives%20bone%20niche%20recapitulation%20in%20a%20rabbit%20orthotopic%20model&rft.jtitle=Materials%20today%20bio&rft.au=Minardi,%20S&rft.date=2019-03-01&rft.volume=2&rft.spage=100005&rft.epage=100005&rft.pages=100005-100005&rft.artnum=100005&rft.issn=2590-0064&rft.eissn=2590-0064&rft_id=info:doi/10.1016/j.mtbio.2019.100005&rft_dat=%3Cproquest_doaj_%3E2376226311%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c471t-ab2b63e811f4a203a6c6af0fbaf9ac0e4693db18b3866e8d088b9b4bea2981673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2376226311&rft_id=info:pmid/32159142&rfr_iscdi=true