Loading…

Experimental-Based Optimization of Injection Molding Process Parameters for Short Product Cycle Time

This paper presents a framework for optimizing injection molding process parameters for minimum product cycle time subjected to constraints on the product defects. Two product defects, namely, volumetric shrinkage and warpage, as well as seven process parameters including injection speed, injection...

Full description

Saved in:
Bibliographic Details
Published in:Advances in polymer technology 2020, Vol.2020 (2020), p.1-15
Main Author: Mukras, Saad M. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a framework for optimizing injection molding process parameters for minimum product cycle time subjected to constraints on the product defects. Two product defects, namely, volumetric shrinkage and warpage, as well as seven process parameters including injection speed, injection pressure, cooling time, packing pressure, mold temperature, packing time, and melt temperature, were considered. Injection molding experiments were conducted on specifically chosen test points and results were used to compute the volumetric shrinkage and warpage (at each test point). Thereafter, three relationships between the product cycle time (one relationship), the two product defects (two relationships), and the injection molding parameters were constructed using the kriging technique. An optimization problem to minimize the product cycle time (described by the first relationship) subject to constraints on the product defects (described by the latter two relationships) was then formulated. A combination set of points between the lower and upper extreme values of acceptable product defect was generated to serve as constraints for the two product defects. The optimization problem was then solved using the Fmincon function, available in the Matlab optimization toolbox. A plot of the optimization results revealed an appreciable tradeoff between the cycle time and the two product defects. To validate the optimization, an additional injection molding experiment was conducted for one of the optimization results. Results from the additional experiment showed reasonably close agreement with simulation optimization results differing in the cycle time, the warpage and volumetric shrinkage by 6.7%, 3.2%, and 8%, respectively.
ISSN:0730-6679
1098-2329
DOI:10.1155/2020/1309209