Loading…
Terminal Phase Navigation for AUV Docking: An Innovative Electromagnetic Approach
This study introduces a groundbreaking approach for real-time 3D localization, specifically focusing on achieving seamless and precise localization during the terminal guidance phase of an autonomous underwater vehicle (AUV) as it approaches an omnidirectional docking component in an automated deplo...
Saved in:
Published in: | Journal of marine science and engineering 2024-01, Vol.12 (1), p.192 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study introduces a groundbreaking approach for real-time 3D localization, specifically focusing on achieving seamless and precise localization during the terminal guidance phase of an autonomous underwater vehicle (AUV) as it approaches an omnidirectional docking component in an automated deployable launch and recovery system (LARS). Using the AUV’s magnetometer, an economical electromagnetic beacon embedded in the docking component, and an advanced signal processing algorithm, this novel approach ensures the accurate localization of the docking component in three dimensions without the need for direct line-of-sight contact. The method’s real-time capabilities were rigorously evaluated via simulations, prototype experiments in a controlled lab setting, and extensive full-scale pool experiments. These assessments consistently demonstrated an exceptional average positioning accuracy of under 3 cm, marking a significant advancement in AUV guidance systems. |
---|---|
ISSN: | 2077-1312 2077-1312 |
DOI: | 10.3390/jmse12010192 |