Loading…

Bipolar Magnetic and Thermospin Transport Properties of Graphene Nanoribbons with Zigzag and Klein Edges

Magnetic nanoribbons based on one-dimensional materials are potential candidates for spin caloritronics devices. Here, we constructed ferromagnetic graphene nanoribbons with zigzag and Klein edges (N-ZKGNRs, N = 4–21) and found that the N-ZKGNRs are in the indirect-gap bipolar magnetic semiconductin...

Full description

Saved in:
Bibliographic Details
Published in:Advances in materials science and engineering 2021, Vol.2021 (1)
Main Authors: Tan, Xingyi, Xu, Gang, Jiang, Youchang, Ren, Dahua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3185-90beb25273214b691329b536696d761e683d87eb04aeb13a8a958755467b78023
cites cdi_FETCH-LOGICAL-c3185-90beb25273214b691329b536696d761e683d87eb04aeb13a8a958755467b78023
container_end_page
container_issue 1
container_start_page
container_title Advances in materials science and engineering
container_volume 2021
creator Tan, Xingyi
Xu, Gang
Jiang, Youchang
Ren, Dahua
description Magnetic nanoribbons based on one-dimensional materials are potential candidates for spin caloritronics devices. Here, we constructed ferromagnetic graphene nanoribbons with zigzag and Klein edges (N-ZKGNRs, N = 4–21) and found that the N-ZKGNRs are in the indirect-gap bipolar magnetic semiconducting state (BMS). Moreover, when a temperature difference is applied through the nanoribbons, spin-dependent currents with opposite flow directions and opposite spin directions are generated, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). In addition, the spin-dependent Seebeck diode effect (SDSD) also appeared in these devices. More importantly, we found that the BMS with a larger bandgap is promising for generating the SDSD, while the BMS with a smaller bandgap is promising for generating the SDSE. These findings show that ZKGNRs are promising candidates for spin caloritronics devices.
doi_str_mv 10.1155/2021/1792405
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03c45e84951d4c1ab020d0e085e8cdea</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03c45e84951d4c1ab020d0e085e8cdea</doaj_id><sourcerecordid>2611363507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3185-90beb25273214b691329b536696d761e683d87eb04aeb13a8a958755467b78023</originalsourceid><addsrcrecordid>eNp9kU1PFTEUhidGEgmw8wc0cakX-v2xVIJARHRx3bhpTqfnzvTm0o7tEKK_noFLWHo2PXnz5Gmbt-veM3rKmFJnnHJ2xozjkqo33SHT1qyslPzt6y7ku-6ktS1dRjilnTzsxi9pKjuo5DsMGefUE8iRrEesd6VNKZN1hdymUmfys5YJ65ywkbIhlxWmETOSW8ilphBKbuQhzSP5nYZ_MDx7vu1wUVzEAdtxd7CBXcOTl_Oo-_X1Yn1-tbr5cXl9_vlm1Qtm1crRgIErbgRnMmjHBHdBCa2djkYz1FZEazBQCRiYAAtOWaOU1CYYS7k46q733lhg66ea7qD-9QWSfw5KHTwsn-h36KnopUIrnWJR9gwC5TRSpHYJ-4iwuD7sXVMtf-6xzX5b7mtenu-5ZkxooahZqE97qq-ltYqb11sZ9U_V-Kdq_Es1C_5xj48pR3hI_6cfAUJEi4M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611363507</pqid></control><display><type>article</type><title>Bipolar Magnetic and Thermospin Transport Properties of Graphene Nanoribbons with Zigzag and Klein Edges</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Tan, Xingyi ; Xu, Gang ; Jiang, Youchang ; Ren, Dahua</creator><contributor>Giannopoulos, Georgios I. ; Georgios I Giannopoulos</contributor><creatorcontrib>Tan, Xingyi ; Xu, Gang ; Jiang, Youchang ; Ren, Dahua ; Giannopoulos, Georgios I. ; Georgios I Giannopoulos</creatorcontrib><description>Magnetic nanoribbons based on one-dimensional materials are potential candidates for spin caloritronics devices. Here, we constructed ferromagnetic graphene nanoribbons with zigzag and Klein edges (N-ZKGNRs, N = 4–21) and found that the N-ZKGNRs are in the indirect-gap bipolar magnetic semiconducting state (BMS). Moreover, when a temperature difference is applied through the nanoribbons, spin-dependent currents with opposite flow directions and opposite spin directions are generated, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). In addition, the spin-dependent Seebeck diode effect (SDSD) also appeared in these devices. More importantly, we found that the BMS with a larger bandgap is promising for generating the SDSD, while the BMS with a smaller bandgap is promising for generating the SDSE. These findings show that ZKGNRs are promising candidates for spin caloritronics devices.</description><identifier>ISSN: 1687-8434</identifier><identifier>EISSN: 1687-8442</identifier><identifier>DOI: 10.1155/2021/1792405</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Electrodes ; Energy gap ; Ferromagnetism ; Graphene ; Magnetic properties ; Nanoribbons ; Seebeck effect ; Transport properties</subject><ispartof>Advances in materials science and engineering, 2021, Vol.2021 (1)</ispartof><rights>Copyright © 2021 Xingyi Tan et al.</rights><rights>Copyright © 2021 Xingyi Tan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3185-90beb25273214b691329b536696d761e683d87eb04aeb13a8a958755467b78023</citedby><cites>FETCH-LOGICAL-c3185-90beb25273214b691329b536696d761e683d87eb04aeb13a8a958755467b78023</cites><orcidid>0000-0002-9177-6853 ; 0000-0002-6290-4908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2611363507/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2611363507?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Giannopoulos, Georgios I.</contributor><contributor>Georgios I Giannopoulos</contributor><creatorcontrib>Tan, Xingyi</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Jiang, Youchang</creatorcontrib><creatorcontrib>Ren, Dahua</creatorcontrib><title>Bipolar Magnetic and Thermospin Transport Properties of Graphene Nanoribbons with Zigzag and Klein Edges</title><title>Advances in materials science and engineering</title><description>Magnetic nanoribbons based on one-dimensional materials are potential candidates for spin caloritronics devices. Here, we constructed ferromagnetic graphene nanoribbons with zigzag and Klein edges (N-ZKGNRs, N = 4–21) and found that the N-ZKGNRs are in the indirect-gap bipolar magnetic semiconducting state (BMS). Moreover, when a temperature difference is applied through the nanoribbons, spin-dependent currents with opposite flow directions and opposite spin directions are generated, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). In addition, the spin-dependent Seebeck diode effect (SDSD) also appeared in these devices. More importantly, we found that the BMS with a larger bandgap is promising for generating the SDSD, while the BMS with a smaller bandgap is promising for generating the SDSE. These findings show that ZKGNRs are promising candidates for spin caloritronics devices.</description><subject>Electrodes</subject><subject>Energy gap</subject><subject>Ferromagnetism</subject><subject>Graphene</subject><subject>Magnetic properties</subject><subject>Nanoribbons</subject><subject>Seebeck effect</subject><subject>Transport properties</subject><issn>1687-8434</issn><issn>1687-8442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kU1PFTEUhidGEgmw8wc0cakX-v2xVIJARHRx3bhpTqfnzvTm0o7tEKK_noFLWHo2PXnz5Gmbt-veM3rKmFJnnHJ2xozjkqo33SHT1qyslPzt6y7ku-6ktS1dRjilnTzsxi9pKjuo5DsMGefUE8iRrEesd6VNKZN1hdymUmfys5YJ65ywkbIhlxWmETOSW8ilphBKbuQhzSP5nYZ_MDx7vu1wUVzEAdtxd7CBXcOTl_Oo-_X1Yn1-tbr5cXl9_vlm1Qtm1crRgIErbgRnMmjHBHdBCa2djkYz1FZEazBQCRiYAAtOWaOU1CYYS7k46q733lhg66ea7qD-9QWSfw5KHTwsn-h36KnopUIrnWJR9gwC5TRSpHYJ-4iwuD7sXVMtf-6xzX5b7mtenu-5ZkxooahZqE97qq-ltYqb11sZ9U_V-Kdq_Es1C_5xj48pR3hI_6cfAUJEi4M</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Tan, Xingyi</creator><creator>Xu, Gang</creator><creator>Jiang, Youchang</creator><creator>Ren, Dahua</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9177-6853</orcidid><orcidid>https://orcid.org/0000-0002-6290-4908</orcidid></search><sort><creationdate>2021</creationdate><title>Bipolar Magnetic and Thermospin Transport Properties of Graphene Nanoribbons with Zigzag and Klein Edges</title><author>Tan, Xingyi ; Xu, Gang ; Jiang, Youchang ; Ren, Dahua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3185-90beb25273214b691329b536696d761e683d87eb04aeb13a8a958755467b78023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Electrodes</topic><topic>Energy gap</topic><topic>Ferromagnetism</topic><topic>Graphene</topic><topic>Magnetic properties</topic><topic>Nanoribbons</topic><topic>Seebeck effect</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xingyi</creatorcontrib><creatorcontrib>Xu, Gang</creatorcontrib><creatorcontrib>Jiang, Youchang</creatorcontrib><creatorcontrib>Ren, Dahua</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in materials science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xingyi</au><au>Xu, Gang</au><au>Jiang, Youchang</au><au>Ren, Dahua</au><au>Giannopoulos, Georgios I.</au><au>Georgios I Giannopoulos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bipolar Magnetic and Thermospin Transport Properties of Graphene Nanoribbons with Zigzag and Klein Edges</atitle><jtitle>Advances in materials science and engineering</jtitle><date>2021</date><risdate>2021</risdate><volume>2021</volume><issue>1</issue><issn>1687-8434</issn><eissn>1687-8442</eissn><abstract>Magnetic nanoribbons based on one-dimensional materials are potential candidates for spin caloritronics devices. Here, we constructed ferromagnetic graphene nanoribbons with zigzag and Klein edges (N-ZKGNRs, N = 4–21) and found that the N-ZKGNRs are in the indirect-gap bipolar magnetic semiconducting state (BMS). Moreover, when a temperature difference is applied through the nanoribbons, spin-dependent currents with opposite flow directions and opposite spin directions are generated, indicating the occurrence of the spin-dependent Seebeck effect (SDSE). In addition, the spin-dependent Seebeck diode effect (SDSD) also appeared in these devices. More importantly, we found that the BMS with a larger bandgap is promising for generating the SDSD, while the BMS with a smaller bandgap is promising for generating the SDSE. These findings show that ZKGNRs are promising candidates for spin caloritronics devices.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/1792405</doi><orcidid>https://orcid.org/0000-0002-9177-6853</orcidid><orcidid>https://orcid.org/0000-0002-6290-4908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-8434
ispartof Advances in materials science and engineering, 2021, Vol.2021 (1)
issn 1687-8434
1687-8442
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_03c45e84951d4c1ab020d0e085e8cdea
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Electrodes
Energy gap
Ferromagnetism
Graphene
Magnetic properties
Nanoribbons
Seebeck effect
Transport properties
title Bipolar Magnetic and Thermospin Transport Properties of Graphene Nanoribbons with Zigzag and Klein Edges
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bipolar%20Magnetic%20and%20Thermospin%20Transport%20Properties%20of%20Graphene%20Nanoribbons%20with%20Zigzag%20and%20Klein%20Edges&rft.jtitle=Advances%20in%20materials%20science%20and%20engineering&rft.au=Tan,%20Xingyi&rft.date=2021&rft.volume=2021&rft.issue=1&rft.issn=1687-8434&rft.eissn=1687-8442&rft_id=info:doi/10.1155/2021/1792405&rft_dat=%3Cproquest_doaj_%3E2611363507%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3185-90beb25273214b691329b536696d761e683d87eb04aeb13a8a958755467b78023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2611363507&rft_id=info:pmid/&rfr_iscdi=true