Loading…
Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators
The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics,...
Saved in:
Published in: | Nature communications 2019-05, Vol.10 (1), p.2371-2371, Article 2371 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23 |
---|---|
cites | cdi_FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23 |
container_end_page | 2371 |
container_issue | 1 |
container_start_page | 2371 |
container_title | Nature communications |
container_volume | 10 |
creator | Wu, Meng Li, Zhenglu Cao, Ting Louie, Steven G. |
description | The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principles
GW
and Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI
3
. We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets.
The magneto-optical (MO) effects probe the electronic and magnetic properties of a material, particularly useful for 2D magnets. Here, the authors show that the large optical and MO responses in ferromagnetic monolayer CrI
3
arise from strongly bound excitons, extending over several atoms. |
doi_str_mv | 10.1038/s41467-019-10325-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03cdfdd4ae7744b6b3278ecbbdb00a08</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03cdfdd4ae7744b6b3278ecbbdb00a08</doaj_id><sourcerecordid>2232652678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2CBItiwCfjtzAYJVTwqVYIFrC0_bjIeJfZgO4X-ezyTUloWeOPHPee7tnWa5jlGbzCi_dvMMBOyQ3jT1T3hnXzUnBLEcIcloY_vrU-a85x3qA66wT1jT5sTijGTXODTZvq6vcne6qmNyY8-tHFoR69DaeGX9SUGb1sdXDvrMUCJXdyXozpB3seQIbfVU37GzvkZQvYx1OIAKcXVUe0-5GXSJab8rHky6CnD-e181nz_-OHbxefu6suny4v3V50VlJau10Y4g53F4BinhAy96KVgnFnKMKcwGKGFIAKbDQygLeODqaecU6StI_SsuVy5Luqd2ic_63SjovbqeBDTqHSqV5tAIWrd4BzTICVjRhhKZA_WGGcQ0qivrHcra7-YGZyFUJKeHkAfVoLfqjFeK8EZ6amogJcrIObiVa6fCnZrYwhgi8KcSIQPXV7fdknxxwK5qNlnC9OkA8QlK0Io7QXpxaZKX_0j3cUl1W8_qojgRMgDkKwqm2LOCYa7G2OkDgFSa4BUDZA6BkjJanpx_613lj9xqQK6CnIthRHS397_wf4GLEHTdA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232652678</pqid></control><display><type>article</type><title>Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wu, Meng ; Li, Zhenglu ; Cao, Ting ; Louie, Steven G.</creator><creatorcontrib>Wu, Meng ; Li, Zhenglu ; Cao, Ting ; Louie, Steven G. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principles
GW
and Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI
3
. We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets.
The magneto-optical (MO) effects probe the electronic and magnetic properties of a material, particularly useful for 2D magnets. Here, the authors show that the large optical and MO responses in ferromagnetic monolayer CrI
3
arise from strongly bound excitons, extending over several atoms.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-10325-7</identifier><identifier>PMID: 31147561</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019 ; 639/301/1034 ; 639/766/119 ; 639/766/119/997 ; Bethe-Salpeter equation ; Circular dichroism ; Crystal structure ; Crystals ; Dependence ; Dichroism ; Energy ; Ferromagnetism ; First principles ; Humanities and Social Sciences ; Insulators ; Iodine ; Ligands ; Magnetism ; Magnets ; MATERIALS SCIENCE ; multidisciplinary ; Optoelectronic devices ; Science ; Science (multidisciplinary) ; Substrates ; Thin films</subject><ispartof>Nature communications, 2019-05, Vol.10 (1), p.2371-2371, Article 2371</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23</citedby><cites>FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23</cites><orcidid>0000-0002-3851-9241 ; 0000-0003-1300-6084 ; 0000-0003-0622-0170 ; 0000-0002-9277-1173 ; 0000000238519241 ; 0000000313006084 ; 0000000292771173 ; 0000000306220170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2232652678/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2232652678?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31147561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1527018$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Meng</creatorcontrib><creatorcontrib>Li, Zhenglu</creatorcontrib><creatorcontrib>Cao, Ting</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principles
GW
and Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI
3
. We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets.
The magneto-optical (MO) effects probe the electronic and magnetic properties of a material, particularly useful for 2D magnets. Here, the authors show that the large optical and MO responses in ferromagnetic monolayer CrI
3
arise from strongly bound excitons, extending over several atoms.</description><subject>639/301/1019</subject><subject>639/301/1034</subject><subject>639/766/119</subject><subject>639/766/119/997</subject><subject>Bethe-Salpeter equation</subject><subject>Circular dichroism</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dependence</subject><subject>Dichroism</subject><subject>Energy</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Humanities and Social Sciences</subject><subject>Insulators</subject><subject>Iodine</subject><subject>Ligands</subject><subject>Magnetism</subject><subject>Magnets</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Optoelectronic devices</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrates</subject><subject>Thin films</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2CBItiwCfjtzAYJVTwqVYIFrC0_bjIeJfZgO4X-ezyTUloWeOPHPee7tnWa5jlGbzCi_dvMMBOyQ3jT1T3hnXzUnBLEcIcloY_vrU-a85x3qA66wT1jT5sTijGTXODTZvq6vcne6qmNyY8-tHFoR69DaeGX9SUGb1sdXDvrMUCJXdyXozpB3seQIbfVU37GzvkZQvYx1OIAKcXVUe0-5GXSJab8rHky6CnD-e181nz_-OHbxefu6suny4v3V50VlJau10Y4g53F4BinhAy96KVgnFnKMKcwGKGFIAKbDQygLeODqaecU6StI_SsuVy5Luqd2ic_63SjovbqeBDTqHSqV5tAIWrd4BzTICVjRhhKZA_WGGcQ0qivrHcra7-YGZyFUJKeHkAfVoLfqjFeK8EZ6amogJcrIObiVa6fCnZrYwhgi8KcSIQPXV7fdknxxwK5qNlnC9OkA8QlK0Io7QXpxaZKX_0j3cUl1W8_qojgRMgDkKwqm2LOCYa7G2OkDgFSa4BUDZA6BkjJanpx_613lj9xqQK6CnIthRHS397_wf4GLEHTdA</recordid><startdate>20190530</startdate><enddate>20190530</enddate><creator>Wu, Meng</creator><creator>Li, Zhenglu</creator><creator>Cao, Ting</creator><creator>Louie, Steven G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3851-9241</orcidid><orcidid>https://orcid.org/0000-0003-1300-6084</orcidid><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-9277-1173</orcidid><orcidid>https://orcid.org/0000000238519241</orcidid><orcidid>https://orcid.org/0000000313006084</orcidid><orcidid>https://orcid.org/0000000292771173</orcidid><orcidid>https://orcid.org/0000000306220170</orcidid></search><sort><creationdate>20190530</creationdate><title>Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators</title><author>Wu, Meng ; Li, Zhenglu ; Cao, Ting ; Louie, Steven G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1019</topic><topic>639/301/1034</topic><topic>639/766/119</topic><topic>639/766/119/997</topic><topic>Bethe-Salpeter equation</topic><topic>Circular dichroism</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dependence</topic><topic>Dichroism</topic><topic>Energy</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Humanities and Social Sciences</topic><topic>Insulators</topic><topic>Iodine</topic><topic>Ligands</topic><topic>Magnetism</topic><topic>Magnets</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Optoelectronic devices</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Meng</creatorcontrib><creatorcontrib>Li, Zhenglu</creatorcontrib><creatorcontrib>Cao, Ting</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Meng</au><au>Li, Zhenglu</au><au>Cao, Ting</au><au>Louie, Steven G.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-05-30</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>2371</spage><epage>2371</epage><pages>2371-2371</pages><artnum>2371</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principles
GW
and Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI
3
. We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets.
The magneto-optical (MO) effects probe the electronic and magnetic properties of a material, particularly useful for 2D magnets. Here, the authors show that the large optical and MO responses in ferromagnetic monolayer CrI
3
arise from strongly bound excitons, extending over several atoms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31147561</pmid><doi>10.1038/s41467-019-10325-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3851-9241</orcidid><orcidid>https://orcid.org/0000-0003-1300-6084</orcidid><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-9277-1173</orcidid><orcidid>https://orcid.org/0000000238519241</orcidid><orcidid>https://orcid.org/0000000313006084</orcidid><orcidid>https://orcid.org/0000000292771173</orcidid><orcidid>https://orcid.org/0000000306220170</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2019-05, Vol.10 (1), p.2371-2371, Article 2371 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_03cdfdd4ae7744b6b3278ecbbdb00a08 |
source | PMC (PubMed Central); Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1019 639/301/1034 639/766/119 639/766/119/997 Bethe-Salpeter equation Circular dichroism Crystal structure Crystals Dependence Dichroism Energy Ferromagnetism First principles Humanities and Social Sciences Insulators Iodine Ligands Magnetism Magnets MATERIALS SCIENCE multidisciplinary Optoelectronic devices Science Science (multidisciplinary) Substrates Thin films |
title | Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20origin%20of%20giant%20excitonic%20and%20magneto-optical%20responses%20in%20two-dimensional%20ferromagnetic%20insulators&rft.jtitle=Nature%20communications&rft.au=Wu,%20Meng&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2019-05-30&rft.volume=10&rft.issue=1&rft.spage=2371&rft.epage=2371&rft.pages=2371-2371&rft.artnum=2371&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-10325-7&rft_dat=%3Cproquest_doaj_%3E2232652678%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232652678&rft_id=info:pmid/31147561&rfr_iscdi=true |