Loading…

Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators

The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics,...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2019-05, Vol.10 (1), p.2371-2371, Article 2371
Main Authors: Wu, Meng, Li, Zhenglu, Cao, Ting, Louie, Steven G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23
cites cdi_FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23
container_end_page 2371
container_issue 1
container_start_page 2371
container_title Nature communications
container_volume 10
creator Wu, Meng
Li, Zhenglu
Cao, Ting
Louie, Steven G.
description The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principles GW and Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI 3 . We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets. The magneto-optical (MO) effects probe the electronic and magnetic properties of a material, particularly useful for 2D magnets. Here, the authors show that the large optical and MO responses in ferromagnetic monolayer CrI 3 arise from strongly bound excitons, extending over several atoms.
doi_str_mv 10.1038/s41467-019-10325-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03cdfdd4ae7744b6b3278ecbbdb00a08</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03cdfdd4ae7744b6b3278ecbbdb00a08</doaj_id><sourcerecordid>2232652678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23</originalsourceid><addsrcrecordid>eNp9kktv1DAUhSMEolXpH2CBItiwCfjtzAYJVTwqVYIFrC0_bjIeJfZgO4X-ezyTUloWeOPHPee7tnWa5jlGbzCi_dvMMBOyQ3jT1T3hnXzUnBLEcIcloY_vrU-a85x3qA66wT1jT5sTijGTXODTZvq6vcne6qmNyY8-tHFoR69DaeGX9SUGb1sdXDvrMUCJXdyXozpB3seQIbfVU37GzvkZQvYx1OIAKcXVUe0-5GXSJab8rHky6CnD-e181nz_-OHbxefu6suny4v3V50VlJau10Y4g53F4BinhAy96KVgnFnKMKcwGKGFIAKbDQygLeODqaecU6StI_SsuVy5Luqd2ic_63SjovbqeBDTqHSqV5tAIWrd4BzTICVjRhhKZA_WGGcQ0qivrHcra7-YGZyFUJKeHkAfVoLfqjFeK8EZ6amogJcrIObiVa6fCnZrYwhgi8KcSIQPXV7fdknxxwK5qNlnC9OkA8QlK0Io7QXpxaZKX_0j3cUl1W8_qojgRMgDkKwqm2LOCYa7G2OkDgFSa4BUDZA6BkjJanpx_613lj9xqQK6CnIthRHS397_wf4GLEHTdA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2232652678</pqid></control><display><type>article</type><title>Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators</title><source>PMC (PubMed Central)</source><source>Publicly Available Content (ProQuest)</source><source>Springer Nature - Connect here FIRST to enable access</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Wu, Meng ; Li, Zhenglu ; Cao, Ting ; Louie, Steven G.</creator><creatorcontrib>Wu, Meng ; Li, Zhenglu ; Cao, Ting ; Louie, Steven G. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principles GW and Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI 3 . We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets. The magneto-optical (MO) effects probe the electronic and magnetic properties of a material, particularly useful for 2D magnets. Here, the authors show that the large optical and MO responses in ferromagnetic monolayer CrI 3 arise from strongly bound excitons, extending over several atoms.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-019-10325-7</identifier><identifier>PMID: 31147561</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019 ; 639/301/1034 ; 639/766/119 ; 639/766/119/997 ; Bethe-Salpeter equation ; Circular dichroism ; Crystal structure ; Crystals ; Dependence ; Dichroism ; Energy ; Ferromagnetism ; First principles ; Humanities and Social Sciences ; Insulators ; Iodine ; Ligands ; Magnetism ; Magnets ; MATERIALS SCIENCE ; multidisciplinary ; Optoelectronic devices ; Science ; Science (multidisciplinary) ; Substrates ; Thin films</subject><ispartof>Nature communications, 2019-05, Vol.10 (1), p.2371-2371, Article 2371</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23</citedby><cites>FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23</cites><orcidid>0000-0002-3851-9241 ; 0000-0003-1300-6084 ; 0000-0003-0622-0170 ; 0000-0002-9277-1173 ; 0000000238519241 ; 0000000313006084 ; 0000000292771173 ; 0000000306220170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2232652678/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2232652678?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31147561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1527018$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Meng</creatorcontrib><creatorcontrib>Li, Zhenglu</creatorcontrib><creatorcontrib>Cao, Ting</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principles GW and Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI 3 . We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets. The magneto-optical (MO) effects probe the electronic and magnetic properties of a material, particularly useful for 2D magnets. Here, the authors show that the large optical and MO responses in ferromagnetic monolayer CrI 3 arise from strongly bound excitons, extending over several atoms.</description><subject>639/301/1019</subject><subject>639/301/1034</subject><subject>639/766/119</subject><subject>639/766/119/997</subject><subject>Bethe-Salpeter equation</subject><subject>Circular dichroism</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Dependence</subject><subject>Dichroism</subject><subject>Energy</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Humanities and Social Sciences</subject><subject>Insulators</subject><subject>Iodine</subject><subject>Ligands</subject><subject>Magnetism</subject><subject>Magnets</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Optoelectronic devices</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Substrates</subject><subject>Thin films</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kktv1DAUhSMEolXpH2CBItiwCfjtzAYJVTwqVYIFrC0_bjIeJfZgO4X-ezyTUloWeOPHPee7tnWa5jlGbzCi_dvMMBOyQ3jT1T3hnXzUnBLEcIcloY_vrU-a85x3qA66wT1jT5sTijGTXODTZvq6vcne6qmNyY8-tHFoR69DaeGX9SUGb1sdXDvrMUCJXdyXozpB3seQIbfVU37GzvkZQvYx1OIAKcXVUe0-5GXSJab8rHky6CnD-e181nz_-OHbxefu6suny4v3V50VlJau10Y4g53F4BinhAy96KVgnFnKMKcwGKGFIAKbDQygLeODqaecU6StI_SsuVy5Luqd2ic_63SjovbqeBDTqHSqV5tAIWrd4BzTICVjRhhKZA_WGGcQ0qivrHcra7-YGZyFUJKeHkAfVoLfqjFeK8EZ6amogJcrIObiVa6fCnZrYwhgi8KcSIQPXV7fdknxxwK5qNlnC9OkA8QlK0Io7QXpxaZKX_0j3cUl1W8_qojgRMgDkKwqm2LOCYa7G2OkDgFSa4BUDZA6BkjJanpx_613lj9xqQK6CnIthRHS397_wf4GLEHTdA</recordid><startdate>20190530</startdate><enddate>20190530</enddate><creator>Wu, Meng</creator><creator>Li, Zhenglu</creator><creator>Cao, Ting</creator><creator>Louie, Steven G.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3851-9241</orcidid><orcidid>https://orcid.org/0000-0003-1300-6084</orcidid><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-9277-1173</orcidid><orcidid>https://orcid.org/0000000238519241</orcidid><orcidid>https://orcid.org/0000000313006084</orcidid><orcidid>https://orcid.org/0000000292771173</orcidid><orcidid>https://orcid.org/0000000306220170</orcidid></search><sort><creationdate>20190530</creationdate><title>Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators</title><author>Wu, Meng ; Li, Zhenglu ; Cao, Ting ; Louie, Steven G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1019</topic><topic>639/301/1034</topic><topic>639/766/119</topic><topic>639/766/119/997</topic><topic>Bethe-Salpeter equation</topic><topic>Circular dichroism</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Dependence</topic><topic>Dichroism</topic><topic>Energy</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Humanities and Social Sciences</topic><topic>Insulators</topic><topic>Iodine</topic><topic>Ligands</topic><topic>Magnetism</topic><topic>Magnets</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Optoelectronic devices</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Meng</creatorcontrib><creatorcontrib>Li, Zhenglu</creatorcontrib><creatorcontrib>Cao, Ting</creatorcontrib><creatorcontrib>Louie, Steven G.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Proquest Health &amp; Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Meng</au><au>Li, Zhenglu</au><au>Cao, Ting</au><au>Louie, Steven G.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2019-05-30</date><risdate>2019</risdate><volume>10</volume><issue>1</issue><spage>2371</spage><epage>2371</epage><pages>2371-2371</pages><artnum>2371</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The recent discovery of magnetism in atomically thin layers of van der Waals crystals has created great opportunities for exploring light–matter interactions and magneto-optical phenomena in the two-dimensional limit. Optical and magneto-optical experiments have provided insights into these topics, revealing strong magnetic circular dichroism and giant Kerr signals in atomically thin ferromagnetic insulators. However, the nature of the giant magneto-optical responses and their microscopic mechanism remain unclear. Here, by performing first-principles GW and Bethe-Salpeter equation calculations, we show that excitonic effects dominate the optical and magneto-optical responses in the prototypical two-dimensional ferromagnetic insulator, CrI 3 . We simulate the Kerr and Faraday effects in realistic experimental setups, and based on which we predict the sensitive frequency- and substrate-dependence of magneto-optical responses. These findings provide physical understanding of the phenomena as well as potential design principles for engineering magneto-optical and optoelectronic devices using two-dimensional magnets. The magneto-optical (MO) effects probe the electronic and magnetic properties of a material, particularly useful for 2D magnets. Here, the authors show that the large optical and MO responses in ferromagnetic monolayer CrI 3 arise from strongly bound excitons, extending over several atoms.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31147561</pmid><doi>10.1038/s41467-019-10325-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3851-9241</orcidid><orcidid>https://orcid.org/0000-0003-1300-6084</orcidid><orcidid>https://orcid.org/0000-0003-0622-0170</orcidid><orcidid>https://orcid.org/0000-0002-9277-1173</orcidid><orcidid>https://orcid.org/0000000238519241</orcidid><orcidid>https://orcid.org/0000000313006084</orcidid><orcidid>https://orcid.org/0000000292771173</orcidid><orcidid>https://orcid.org/0000000306220170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1723
ispartof Nature communications, 2019-05, Vol.10 (1), p.2371-2371, Article 2371
issn 2041-1723
2041-1723
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_03cdfdd4ae7744b6b3278ecbbdb00a08
source PMC (PubMed Central); Publicly Available Content (ProQuest); Springer Nature - Connect here FIRST to enable access; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1019
639/301/1034
639/766/119
639/766/119/997
Bethe-Salpeter equation
Circular dichroism
Crystal structure
Crystals
Dependence
Dichroism
Energy
Ferromagnetism
First principles
Humanities and Social Sciences
Insulators
Iodine
Ligands
Magnetism
Magnets
MATERIALS SCIENCE
multidisciplinary
Optoelectronic devices
Science
Science (multidisciplinary)
Substrates
Thin films
title Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20origin%20of%20giant%20excitonic%20and%20magneto-optical%20responses%20in%20two-dimensional%20ferromagnetic%20insulators&rft.jtitle=Nature%20communications&rft.au=Wu,%20Meng&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2019-05-30&rft.volume=10&rft.issue=1&rft.spage=2371&rft.epage=2371&rft.pages=2371-2371&rft.artnum=2371&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-019-10325-7&rft_dat=%3Cproquest_doaj_%3E2232652678%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-8ab6db1dc1ed45322f86876454c34153efb6a66261b9efeac45fb3ef5530acd23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2232652678&rft_id=info:pmid/31147561&rfr_iscdi=true