Loading…

Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators

This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on thre...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine science and engineering 2022-12, Vol.10 (12), p.1924
Main Authors: Clemente, Daniel, Rodrigues, Cátia, Esteves, Ricardo, Correia, José, Pereira, André M., Ventura, João O., Rosa-Santos, Paulo, Taveira-Pinto, Francisco, Martins, Paulo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773
cites cdi_FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773
container_end_page
container_issue 12
container_start_page 1924
container_title Journal of marine science and engineering
container_volume 10
creator Clemente, Daniel
Rodrigues, Cátia
Esteves, Ricardo
Correia, José
Pereira, André M.
Ventura, João O.
Rosa-Santos, Paulo
Taveira-Pinto, Francisco
Martins, Paulo
description This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on three original hull designs (half-cylinder (HC), half-sphere (HS) and trapezoidal prism (TP)). A unidirectional lateral tribo-device was incorporated within the E-Motions’ hull during the experiments. The physical models were subjected to eight irregular sea-states from a reference study on the Portuguese coastline. Results point towards a significant hydrodynamic roll response, with peaks of up to 40 °/m. Three peaks were observed for the surge motions, associated with slow drifting at low frequencies. The response bandwidth of the HC sub-variants was affected by the varying PTO mass-damping values. By comparison, such response was generally maintained for all HS sub-variants and improved for the TP sub-variants, due to ballast positioning adjustments. Maximum power ratios ranged between 0.015 kW/m3 and 0.030 kW/m3. The TENGs demonstrated an average open-circuit voltage and power per kilogram ratio of up to 85 V and 18 mW/kg, respectively, whilst exhibiting an evolution highly dependent upon wave excitation, surge excursions and roll oscillations. Thus, TENGs enable redundant dual-mode wave energy conversion alongside E-Motions, which can power supporting equipment with negligible influence on platform hydrodynamics.
doi_str_mv 10.3390/jmse10121924
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03e6e14a8caf465fa9ddd09afc90d3d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751984751</galeid><doaj_id>oai_doaj_org_article_03e6e14a8caf465fa9ddd09afc90d3d3</doaj_id><sourcerecordid>A751984751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773</originalsourceid><addsrcrecordid>eNpNkU1r3DAQhk1poSHJrT9A0Gud6mst-7gs224gTQpNyNGMpZGrxZa2kpLUx_7zKt0SMoKReJn3QTNTVR8YvRCio5_3c0JGGWcdl2-qE06Vqplg_O2r9_vqPKU9LdHyhtHmpPqz_X3A6Gb0GSbyHaMNcQavkaw9TEtyiQRLgOyWITpD7uERydZjHBeyg_iIKTs_kh9LyjiTTZgH55-Fbf0tZBd8Ik8u_yS30Q0BJ9Q5Ok2uwYcRCwRyiOmsemdhSnj-_z6t7r5sbze7-urm6-VmfVVr0YhcK4HUCo6DHECUhjsEgTi0aiWtBC2Nsa3UxjKG1ohB0oZrKRuuLFCKSonT6vLINQH2_aH0DHHpA7j-nxDi2EPMTk_YU4ENMgmtBiublYXOGEM7sLqjRhhRWB-PrEMMvx7KEPp9eIhlYKnnatUoLiXnperiWDVCgTpvQ46gyzE4Ox08Wlf0tVqxrpUlF8Ono0HHkFJE-_JNRvvnJfevlyz-AvuznI0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756724422</pqid></control><display><type>article</type><title>Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators</title><source>Publicly Available Content Database</source><creator>Clemente, Daniel ; Rodrigues, Cátia ; Esteves, Ricardo ; Correia, José ; Pereira, André M. ; Ventura, João O. ; Rosa-Santos, Paulo ; Taveira-Pinto, Francisco ; Martins, Paulo</creator><creatorcontrib>Clemente, Daniel ; Rodrigues, Cátia ; Esteves, Ricardo ; Correia, José ; Pereira, André M. ; Ventura, João O. ; Rosa-Santos, Paulo ; Taveira-Pinto, Francisco ; Martins, Paulo</creatorcontrib><description>This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on three original hull designs (half-cylinder (HC), half-sphere (HS) and trapezoidal prism (TP)). A unidirectional lateral tribo-device was incorporated within the E-Motions’ hull during the experiments. The physical models were subjected to eight irregular sea-states from a reference study on the Portuguese coastline. Results point towards a significant hydrodynamic roll response, with peaks of up to 40 °/m. Three peaks were observed for the surge motions, associated with slow drifting at low frequencies. The response bandwidth of the HC sub-variants was affected by the varying PTO mass-damping values. By comparison, such response was generally maintained for all HS sub-variants and improved for the TP sub-variants, due to ballast positioning adjustments. Maximum power ratios ranged between 0.015 kW/m3 and 0.030 kW/m3. The TENGs demonstrated an average open-circuit voltage and power per kilogram ratio of up to 85 V and 18 mW/kg, respectively, whilst exhibiting an evolution highly dependent upon wave excitation, surge excursions and roll oscillations. Thus, TENGs enable redundant dual-mode wave energy conversion alongside E-Motions, which can power supporting equipment with negligible influence on platform hydrodynamics.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse10121924</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptability ; Alternative energy sources ; Analysis ; Ballast ; Case studies ; Damping ; E-Motions ; Electric generators ; Electric power production ; Electricity ; Energy conversion ; Energy harvesting ; Energy industry ; Energy resources ; Hybrid systems ; Hybridization ; hydrodynamic response ; Hydrodynamics ; Maximum power ; Nanogenerators ; Open circuit voltage ; Oscillations ; physical modelling ; Roll response ; Technology ; triboelectric nanogenerators ; Wave energy ; wave energy conversion ; Wave excitation ; Wave power</subject><ispartof>Journal of marine science and engineering, 2022-12, Vol.10 (12), p.1924</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773</citedby><cites>FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773</cites><orcidid>0000-0003-0494-3009 ; 0000-0003-4599-9287 ; 0000-0002-3768-3314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756724422/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756724422?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Clemente, Daniel</creatorcontrib><creatorcontrib>Rodrigues, Cátia</creatorcontrib><creatorcontrib>Esteves, Ricardo</creatorcontrib><creatorcontrib>Correia, José</creatorcontrib><creatorcontrib>Pereira, André M.</creatorcontrib><creatorcontrib>Ventura, João O.</creatorcontrib><creatorcontrib>Rosa-Santos, Paulo</creatorcontrib><creatorcontrib>Taveira-Pinto, Francisco</creatorcontrib><creatorcontrib>Martins, Paulo</creatorcontrib><title>Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators</title><title>Journal of marine science and engineering</title><description>This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on three original hull designs (half-cylinder (HC), half-sphere (HS) and trapezoidal prism (TP)). A unidirectional lateral tribo-device was incorporated within the E-Motions’ hull during the experiments. The physical models were subjected to eight irregular sea-states from a reference study on the Portuguese coastline. Results point towards a significant hydrodynamic roll response, with peaks of up to 40 °/m. Three peaks were observed for the surge motions, associated with slow drifting at low frequencies. The response bandwidth of the HC sub-variants was affected by the varying PTO mass-damping values. By comparison, such response was generally maintained for all HS sub-variants and improved for the TP sub-variants, due to ballast positioning adjustments. Maximum power ratios ranged between 0.015 kW/m3 and 0.030 kW/m3. The TENGs demonstrated an average open-circuit voltage and power per kilogram ratio of up to 85 V and 18 mW/kg, respectively, whilst exhibiting an evolution highly dependent upon wave excitation, surge excursions and roll oscillations. Thus, TENGs enable redundant dual-mode wave energy conversion alongside E-Motions, which can power supporting equipment with negligible influence on platform hydrodynamics.</description><subject>Adaptability</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Ballast</subject><subject>Case studies</subject><subject>Damping</subject><subject>E-Motions</subject><subject>Electric generators</subject><subject>Electric power production</subject><subject>Electricity</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Energy industry</subject><subject>Energy resources</subject><subject>Hybrid systems</subject><subject>Hybridization</subject><subject>hydrodynamic response</subject><subject>Hydrodynamics</subject><subject>Maximum power</subject><subject>Nanogenerators</subject><subject>Open circuit voltage</subject><subject>Oscillations</subject><subject>physical modelling</subject><subject>Roll response</subject><subject>Technology</subject><subject>triboelectric nanogenerators</subject><subject>Wave energy</subject><subject>wave energy conversion</subject><subject>Wave excitation</subject><subject>Wave power</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1r3DAQhk1poSHJrT9A0Gud6mst-7gs224gTQpNyNGMpZGrxZa2kpLUx_7zKt0SMoKReJn3QTNTVR8YvRCio5_3c0JGGWcdl2-qE06Vqplg_O2r9_vqPKU9LdHyhtHmpPqz_X3A6Gb0GSbyHaMNcQavkaw9TEtyiQRLgOyWITpD7uERydZjHBeyg_iIKTs_kh9LyjiTTZgH55-Fbf0tZBd8Ik8u_yS30Q0BJ9Q5Ok2uwYcRCwRyiOmsemdhSnj-_z6t7r5sbze7-urm6-VmfVVr0YhcK4HUCo6DHECUhjsEgTi0aiWtBC2Nsa3UxjKG1ohB0oZrKRuuLFCKSonT6vLINQH2_aH0DHHpA7j-nxDi2EPMTk_YU4ENMgmtBiublYXOGEM7sLqjRhhRWB-PrEMMvx7KEPp9eIhlYKnnatUoLiXnperiWDVCgTpvQ46gyzE4Ox08Wlf0tVqxrpUlF8Ono0HHkFJE-_JNRvvnJfevlyz-AvuznI0</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Clemente, Daniel</creator><creator>Rodrigues, Cátia</creator><creator>Esteves, Ricardo</creator><creator>Correia, José</creator><creator>Pereira, André M.</creator><creator>Ventura, João O.</creator><creator>Rosa-Santos, Paulo</creator><creator>Taveira-Pinto, Francisco</creator><creator>Martins, Paulo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0494-3009</orcidid><orcidid>https://orcid.org/0000-0003-4599-9287</orcidid><orcidid>https://orcid.org/0000-0002-3768-3314</orcidid></search><sort><creationdate>20221201</creationdate><title>Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators</title><author>Clemente, Daniel ; Rodrigues, Cátia ; Esteves, Ricardo ; Correia, José ; Pereira, André M. ; Ventura, João O. ; Rosa-Santos, Paulo ; Taveira-Pinto, Francisco ; Martins, Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptability</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Ballast</topic><topic>Case studies</topic><topic>Damping</topic><topic>E-Motions</topic><topic>Electric generators</topic><topic>Electric power production</topic><topic>Electricity</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Energy industry</topic><topic>Energy resources</topic><topic>Hybrid systems</topic><topic>Hybridization</topic><topic>hydrodynamic response</topic><topic>Hydrodynamics</topic><topic>Maximum power</topic><topic>Nanogenerators</topic><topic>Open circuit voltage</topic><topic>Oscillations</topic><topic>physical modelling</topic><topic>Roll response</topic><topic>Technology</topic><topic>triboelectric nanogenerators</topic><topic>Wave energy</topic><topic>wave energy conversion</topic><topic>Wave excitation</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clemente, Daniel</creatorcontrib><creatorcontrib>Rodrigues, Cátia</creatorcontrib><creatorcontrib>Esteves, Ricardo</creatorcontrib><creatorcontrib>Correia, José</creatorcontrib><creatorcontrib>Pereira, André M.</creatorcontrib><creatorcontrib>Ventura, João O.</creatorcontrib><creatorcontrib>Rosa-Santos, Paulo</creatorcontrib><creatorcontrib>Taveira-Pinto, Francisco</creatorcontrib><creatorcontrib>Martins, Paulo</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Agricultural &amp; Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clemente, Daniel</au><au>Rodrigues, Cátia</au><au>Esteves, Ricardo</au><au>Correia, José</au><au>Pereira, André M.</au><au>Ventura, João O.</au><au>Rosa-Santos, Paulo</au><au>Taveira-Pinto, Francisco</au><au>Martins, Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>10</volume><issue>12</issue><spage>1924</spage><pages>1924-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on three original hull designs (half-cylinder (HC), half-sphere (HS) and trapezoidal prism (TP)). A unidirectional lateral tribo-device was incorporated within the E-Motions’ hull during the experiments. The physical models were subjected to eight irregular sea-states from a reference study on the Portuguese coastline. Results point towards a significant hydrodynamic roll response, with peaks of up to 40 °/m. Three peaks were observed for the surge motions, associated with slow drifting at low frequencies. The response bandwidth of the HC sub-variants was affected by the varying PTO mass-damping values. By comparison, such response was generally maintained for all HS sub-variants and improved for the TP sub-variants, due to ballast positioning adjustments. Maximum power ratios ranged between 0.015 kW/m3 and 0.030 kW/m3. The TENGs demonstrated an average open-circuit voltage and power per kilogram ratio of up to 85 V and 18 mW/kg, respectively, whilst exhibiting an evolution highly dependent upon wave excitation, surge excursions and roll oscillations. Thus, TENGs enable redundant dual-mode wave energy conversion alongside E-Motions, which can power supporting equipment with negligible influence on platform hydrodynamics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse10121924</doi><orcidid>https://orcid.org/0000-0003-0494-3009</orcidid><orcidid>https://orcid.org/0000-0003-4599-9287</orcidid><orcidid>https://orcid.org/0000-0002-3768-3314</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2077-1312
ispartof Journal of marine science and engineering, 2022-12, Vol.10 (12), p.1924
issn 2077-1312
2077-1312
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_03e6e14a8caf465fa9ddd09afc90d3d3
source Publicly Available Content Database
subjects Adaptability
Alternative energy sources
Analysis
Ballast
Case studies
Damping
E-Motions
Electric generators
Electric power production
Electricity
Energy conversion
Energy harvesting
Energy industry
Energy resources
Hybrid systems
Hybridization
hydrodynamic response
Hydrodynamics
Maximum power
Nanogenerators
Open circuit voltage
Oscillations
physical modelling
Roll response
Technology
triboelectric nanogenerators
Wave energy
wave energy conversion
Wave excitation
Wave power
title Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Performance%20Analysis%20of%20a%20Hybrid%20Wave%20Energy%20Harvesting%20System%20Combining%20E-Motions%20with%20Triboelectric%20Nanogenerators&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Clemente,%20Daniel&rft.date=2022-12-01&rft.volume=10&rft.issue=12&rft.spage=1924&rft.pages=1924-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse10121924&rft_dat=%3Cgale_doaj_%3EA751984751%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756724422&rft_id=info:pmid/&rft_galeid=A751984751&rfr_iscdi=true