Loading…
Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators
This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on thre...
Saved in:
Published in: | Journal of marine science and engineering 2022-12, Vol.10 (12), p.1924 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773 |
container_end_page | |
container_issue | 12 |
container_start_page | 1924 |
container_title | Journal of marine science and engineering |
container_volume | 10 |
creator | Clemente, Daniel Rodrigues, Cátia Esteves, Ricardo Correia, José Pereira, André M. Ventura, João O. Rosa-Santos, Paulo Taveira-Pinto, Francisco Martins, Paulo |
description | This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on three original hull designs (half-cylinder (HC), half-sphere (HS) and trapezoidal prism (TP)). A unidirectional lateral tribo-device was incorporated within the E-Motions’ hull during the experiments. The physical models were subjected to eight irregular sea-states from a reference study on the Portuguese coastline. Results point towards a significant hydrodynamic roll response, with peaks of up to 40 °/m. Three peaks were observed for the surge motions, associated with slow drifting at low frequencies. The response bandwidth of the HC sub-variants was affected by the varying PTO mass-damping values. By comparison, such response was generally maintained for all HS sub-variants and improved for the TP sub-variants, due to ballast positioning adjustments. Maximum power ratios ranged between 0.015 kW/m3 and 0.030 kW/m3. The TENGs demonstrated an average open-circuit voltage and power per kilogram ratio of up to 85 V and 18 mW/kg, respectively, whilst exhibiting an evolution highly dependent upon wave excitation, surge excursions and roll oscillations. Thus, TENGs enable redundant dual-mode wave energy conversion alongside E-Motions, which can power supporting equipment with negligible influence on platform hydrodynamics. |
doi_str_mv | 10.3390/jmse10121924 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03e6e14a8caf465fa9ddd09afc90d3d3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A751984751</galeid><doaj_id>oai_doaj_org_article_03e6e14a8caf465fa9ddd09afc90d3d3</doaj_id><sourcerecordid>A751984751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773</originalsourceid><addsrcrecordid>eNpNkU1r3DAQhk1poSHJrT9A0Gud6mst-7gs224gTQpNyNGMpZGrxZa2kpLUx_7zKt0SMoKReJn3QTNTVR8YvRCio5_3c0JGGWcdl2-qE06Vqplg_O2r9_vqPKU9LdHyhtHmpPqz_X3A6Gb0GSbyHaMNcQavkaw9TEtyiQRLgOyWITpD7uERydZjHBeyg_iIKTs_kh9LyjiTTZgH55-Fbf0tZBd8Ik8u_yS30Q0BJ9Q5Ok2uwYcRCwRyiOmsemdhSnj-_z6t7r5sbze7-urm6-VmfVVr0YhcK4HUCo6DHECUhjsEgTi0aiWtBC2Nsa3UxjKG1ohB0oZrKRuuLFCKSonT6vLINQH2_aH0DHHpA7j-nxDi2EPMTk_YU4ENMgmtBiublYXOGEM7sLqjRhhRWB-PrEMMvx7KEPp9eIhlYKnnatUoLiXnperiWDVCgTpvQ46gyzE4Ox08Wlf0tVqxrpUlF8Ono0HHkFJE-_JNRvvnJfevlyz-AvuznI0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756724422</pqid></control><display><type>article</type><title>Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators</title><source>Publicly Available Content Database</source><creator>Clemente, Daniel ; Rodrigues, Cátia ; Esteves, Ricardo ; Correia, José ; Pereira, André M. ; Ventura, João O. ; Rosa-Santos, Paulo ; Taveira-Pinto, Francisco ; Martins, Paulo</creator><creatorcontrib>Clemente, Daniel ; Rodrigues, Cátia ; Esteves, Ricardo ; Correia, José ; Pereira, André M. ; Ventura, João O. ; Rosa-Santos, Paulo ; Taveira-Pinto, Francisco ; Martins, Paulo</creatorcontrib><description>This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on three original hull designs (half-cylinder (HC), half-sphere (HS) and trapezoidal prism (TP)). A unidirectional lateral tribo-device was incorporated within the E-Motions’ hull during the experiments. The physical models were subjected to eight irregular sea-states from a reference study on the Portuguese coastline. Results point towards a significant hydrodynamic roll response, with peaks of up to 40 °/m. Three peaks were observed for the surge motions, associated with slow drifting at low frequencies. The response bandwidth of the HC sub-variants was affected by the varying PTO mass-damping values. By comparison, such response was generally maintained for all HS sub-variants and improved for the TP sub-variants, due to ballast positioning adjustments. Maximum power ratios ranged between 0.015 kW/m3 and 0.030 kW/m3. The TENGs demonstrated an average open-circuit voltage and power per kilogram ratio of up to 85 V and 18 mW/kg, respectively, whilst exhibiting an evolution highly dependent upon wave excitation, surge excursions and roll oscillations. Thus, TENGs enable redundant dual-mode wave energy conversion alongside E-Motions, which can power supporting equipment with negligible influence on platform hydrodynamics.</description><identifier>ISSN: 2077-1312</identifier><identifier>EISSN: 2077-1312</identifier><identifier>DOI: 10.3390/jmse10121924</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adaptability ; Alternative energy sources ; Analysis ; Ballast ; Case studies ; Damping ; E-Motions ; Electric generators ; Electric power production ; Electricity ; Energy conversion ; Energy harvesting ; Energy industry ; Energy resources ; Hybrid systems ; Hybridization ; hydrodynamic response ; Hydrodynamics ; Maximum power ; Nanogenerators ; Open circuit voltage ; Oscillations ; physical modelling ; Roll response ; Technology ; triboelectric nanogenerators ; Wave energy ; wave energy conversion ; Wave excitation ; Wave power</subject><ispartof>Journal of marine science and engineering, 2022-12, Vol.10 (12), p.1924</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773</citedby><cites>FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773</cites><orcidid>0000-0003-0494-3009 ; 0000-0003-4599-9287 ; 0000-0002-3768-3314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2756724422/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2756724422?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Clemente, Daniel</creatorcontrib><creatorcontrib>Rodrigues, Cátia</creatorcontrib><creatorcontrib>Esteves, Ricardo</creatorcontrib><creatorcontrib>Correia, José</creatorcontrib><creatorcontrib>Pereira, André M.</creatorcontrib><creatorcontrib>Ventura, João O.</creatorcontrib><creatorcontrib>Rosa-Santos, Paulo</creatorcontrib><creatorcontrib>Taveira-Pinto, Francisco</creatorcontrib><creatorcontrib>Martins, Paulo</creatorcontrib><title>Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators</title><title>Journal of marine science and engineering</title><description>This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on three original hull designs (half-cylinder (HC), half-sphere (HS) and trapezoidal prism (TP)). A unidirectional lateral tribo-device was incorporated within the E-Motions’ hull during the experiments. The physical models were subjected to eight irregular sea-states from a reference study on the Portuguese coastline. Results point towards a significant hydrodynamic roll response, with peaks of up to 40 °/m. Three peaks were observed for the surge motions, associated with slow drifting at low frequencies. The response bandwidth of the HC sub-variants was affected by the varying PTO mass-damping values. By comparison, such response was generally maintained for all HS sub-variants and improved for the TP sub-variants, due to ballast positioning adjustments. Maximum power ratios ranged between 0.015 kW/m3 and 0.030 kW/m3. The TENGs demonstrated an average open-circuit voltage and power per kilogram ratio of up to 85 V and 18 mW/kg, respectively, whilst exhibiting an evolution highly dependent upon wave excitation, surge excursions and roll oscillations. Thus, TENGs enable redundant dual-mode wave energy conversion alongside E-Motions, which can power supporting equipment with negligible influence on platform hydrodynamics.</description><subject>Adaptability</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Ballast</subject><subject>Case studies</subject><subject>Damping</subject><subject>E-Motions</subject><subject>Electric generators</subject><subject>Electric power production</subject><subject>Electricity</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Energy industry</subject><subject>Energy resources</subject><subject>Hybrid systems</subject><subject>Hybridization</subject><subject>hydrodynamic response</subject><subject>Hydrodynamics</subject><subject>Maximum power</subject><subject>Nanogenerators</subject><subject>Open circuit voltage</subject><subject>Oscillations</subject><subject>physical modelling</subject><subject>Roll response</subject><subject>Technology</subject><subject>triboelectric nanogenerators</subject><subject>Wave energy</subject><subject>wave energy conversion</subject><subject>Wave excitation</subject><subject>Wave power</subject><issn>2077-1312</issn><issn>2077-1312</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1r3DAQhk1poSHJrT9A0Gud6mst-7gs224gTQpNyNGMpZGrxZa2kpLUx_7zKt0SMoKReJn3QTNTVR8YvRCio5_3c0JGGWcdl2-qE06Vqplg_O2r9_vqPKU9LdHyhtHmpPqz_X3A6Gb0GSbyHaMNcQavkaw9TEtyiQRLgOyWITpD7uERydZjHBeyg_iIKTs_kh9LyjiTTZgH55-Fbf0tZBd8Ik8u_yS30Q0BJ9Q5Ok2uwYcRCwRyiOmsemdhSnj-_z6t7r5sbze7-urm6-VmfVVr0YhcK4HUCo6DHECUhjsEgTi0aiWtBC2Nsa3UxjKG1ohB0oZrKRuuLFCKSonT6vLINQH2_aH0DHHpA7j-nxDi2EPMTk_YU4ENMgmtBiublYXOGEM7sLqjRhhRWB-PrEMMvx7KEPp9eIhlYKnnatUoLiXnperiWDVCgTpvQ46gyzE4Ox08Wlf0tVqxrpUlF8Ono0HHkFJE-_JNRvvnJfevlyz-AvuznI0</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Clemente, Daniel</creator><creator>Rodrigues, Cátia</creator><creator>Esteves, Ricardo</creator><creator>Correia, José</creator><creator>Pereira, André M.</creator><creator>Ventura, João O.</creator><creator>Rosa-Santos, Paulo</creator><creator>Taveira-Pinto, Francisco</creator><creator>Martins, Paulo</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0494-3009</orcidid><orcidid>https://orcid.org/0000-0003-4599-9287</orcidid><orcidid>https://orcid.org/0000-0002-3768-3314</orcidid></search><sort><creationdate>20221201</creationdate><title>Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators</title><author>Clemente, Daniel ; Rodrigues, Cátia ; Esteves, Ricardo ; Correia, José ; Pereira, André M. ; Ventura, João O. ; Rosa-Santos, Paulo ; Taveira-Pinto, Francisco ; Martins, Paulo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptability</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Ballast</topic><topic>Case studies</topic><topic>Damping</topic><topic>E-Motions</topic><topic>Electric generators</topic><topic>Electric power production</topic><topic>Electricity</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Energy industry</topic><topic>Energy resources</topic><topic>Hybrid systems</topic><topic>Hybridization</topic><topic>hydrodynamic response</topic><topic>Hydrodynamics</topic><topic>Maximum power</topic><topic>Nanogenerators</topic><topic>Open circuit voltage</topic><topic>Oscillations</topic><topic>physical modelling</topic><topic>Roll response</topic><topic>Technology</topic><topic>triboelectric nanogenerators</topic><topic>Wave energy</topic><topic>wave energy conversion</topic><topic>Wave excitation</topic><topic>Wave power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Clemente, Daniel</creatorcontrib><creatorcontrib>Rodrigues, Cátia</creatorcontrib><creatorcontrib>Esteves, Ricardo</creatorcontrib><creatorcontrib>Correia, José</creatorcontrib><creatorcontrib>Pereira, André M.</creatorcontrib><creatorcontrib>Ventura, João O.</creatorcontrib><creatorcontrib>Rosa-Santos, Paulo</creatorcontrib><creatorcontrib>Taveira-Pinto, Francisco</creatorcontrib><creatorcontrib>Martins, Paulo</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Agricultural & Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of marine science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clemente, Daniel</au><au>Rodrigues, Cátia</au><au>Esteves, Ricardo</au><au>Correia, José</au><au>Pereira, André M.</au><au>Ventura, João O.</au><au>Rosa-Santos, Paulo</au><au>Taveira-Pinto, Francisco</au><au>Martins, Paulo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators</atitle><jtitle>Journal of marine science and engineering</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>10</volume><issue>12</issue><spage>1924</spage><pages>1924-</pages><issn>2077-1312</issn><eissn>2077-1312</eissn><abstract>This paper discusses a disruptive approach to wave energy conversion, based on a hybrid solution: the E-Motions wave energy converter with integrated triboelectric nanogenerators. To demonstrate it, a physical modelling study was carried out with nine E-Motions sub-variants, which were based on three original hull designs (half-cylinder (HC), half-sphere (HS) and trapezoidal prism (TP)). A unidirectional lateral tribo-device was incorporated within the E-Motions’ hull during the experiments. The physical models were subjected to eight irregular sea-states from a reference study on the Portuguese coastline. Results point towards a significant hydrodynamic roll response, with peaks of up to 40 °/m. Three peaks were observed for the surge motions, associated with slow drifting at low frequencies. The response bandwidth of the HC sub-variants was affected by the varying PTO mass-damping values. By comparison, such response was generally maintained for all HS sub-variants and improved for the TP sub-variants, due to ballast positioning adjustments. Maximum power ratios ranged between 0.015 kW/m3 and 0.030 kW/m3. The TENGs demonstrated an average open-circuit voltage and power per kilogram ratio of up to 85 V and 18 mW/kg, respectively, whilst exhibiting an evolution highly dependent upon wave excitation, surge excursions and roll oscillations. Thus, TENGs enable redundant dual-mode wave energy conversion alongside E-Motions, which can power supporting equipment with negligible influence on platform hydrodynamics.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmse10121924</doi><orcidid>https://orcid.org/0000-0003-0494-3009</orcidid><orcidid>https://orcid.org/0000-0003-4599-9287</orcidid><orcidid>https://orcid.org/0000-0002-3768-3314</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2077-1312 |
ispartof | Journal of marine science and engineering, 2022-12, Vol.10 (12), p.1924 |
issn | 2077-1312 2077-1312 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_03e6e14a8caf465fa9ddd09afc90d3d3 |
source | Publicly Available Content Database |
subjects | Adaptability Alternative energy sources Analysis Ballast Case studies Damping E-Motions Electric generators Electric power production Electricity Energy conversion Energy harvesting Energy industry Energy resources Hybrid systems Hybridization hydrodynamic response Hydrodynamics Maximum power Nanogenerators Open circuit voltage Oscillations physical modelling Roll response Technology triboelectric nanogenerators Wave energy wave energy conversion Wave excitation Wave power |
title | Experimental Performance Analysis of a Hybrid Wave Energy Harvesting System Combining E-Motions with Triboelectric Nanogenerators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Performance%20Analysis%20of%20a%20Hybrid%20Wave%20Energy%20Harvesting%20System%20Combining%20E-Motions%20with%20Triboelectric%20Nanogenerators&rft.jtitle=Journal%20of%20marine%20science%20and%20engineering&rft.au=Clemente,%20Daniel&rft.date=2022-12-01&rft.volume=10&rft.issue=12&rft.spage=1924&rft.pages=1924-&rft.issn=2077-1312&rft.eissn=2077-1312&rft_id=info:doi/10.3390/jmse10121924&rft_dat=%3Cgale_doaj_%3EA751984751%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-73e0f32eb4ba33399ea3eeb8754f4ac4ddf84cdf11efd3b4062c44627fa00e773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2756724422&rft_id=info:pmid/&rft_galeid=A751984751&rfr_iscdi=true |