Loading…
Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices
Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2021-02, Vol.21 (3), p.983 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43 |
---|---|
cites | cdi_FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43 |
container_end_page | |
container_issue | 3 |
container_start_page | 983 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 21 |
creator | Herrería-Alonso, Sergio Suárez-González, Andrés Rodríguez-Pérez, Miguel Rodríguez-Rubio, Raúl F López-García, Cándido |
description | Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting schemes of low complexity for their predictions in order to avoid squandering their scarce power and computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for predicting wind speed at short-term horizons. The performance results obtained using real data sets show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes due to its potential for achieving accurate enough predictions with very low computational burden and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to varying wind conditions and locations without requiring any particular reconfiguration or previous data training phase for each different scenario. |
doi_str_mv | 10.3390/s21030983 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03e7fb3f32a94388bbc8b107c646013a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03e7fb3f32a94388bbc8b107c646013a</doaj_id><sourcerecordid>2487154454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43</originalsourceid><addsrcrecordid>eNpVkU1rHDEMhk1paD4P_QNlju1hGtnyjj2XQtjmCwKFJiFHY3vkrcPseGPPBvLvM8mmS3KSkF4evehl7CuHn4gtHBfBAaHV-IntcSlkrYWAz-_6XbZfyj2AQET9he0iziTMFO6xi9MQoo80jNVdHLrqekXUVWcpk7dljMOiCilXf6mkdfZUz9NQxmzjMImuaSjT7jc9Rk_lkO0E2xc6eqsH7Pbs9GZ-UV_9Ob-cn1zVXko-1p6TUAK7BqRQXFjhGq2llK4j0soJDK5B753UDhpOBK0Cq3kDznHeBokH7HLD7ZK9N6sclzY_mWSjeR2kvDA2j9H3ZABJBYcBhW0lau2c146D8o1sgKOdWL82rNXaLanz0xey7T9AP26G-M8s0qNRulFcwwT4_gbI6WFNZTTLWDz1vR0orYsRUis-k3L24vvHRupzKiVT2J7hYF5SNNsUJ-239762yv-x4TP2b5ao</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487154454</pqid></control><display><type>article</type><title>Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Herrería-Alonso, Sergio ; Suárez-González, Andrés ; Rodríguez-Pérez, Miguel ; Rodríguez-Rubio, Raúl F ; López-García, Cándido</creator><creatorcontrib>Herrería-Alonso, Sergio ; Suárez-González, Andrés ; Rodríguez-Pérez, Miguel ; Rodríguez-Rubio, Raúl F ; López-García, Cándido</creatorcontrib><description>Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting schemes of low complexity for their predictions in order to avoid squandering their scarce power and computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for predicting wind speed at short-term horizons. The performance results obtained using real data sets show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes due to its potential for achieving accurate enough predictions with very low computational burden and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to varying wind conditions and locations without requiring any particular reconfiguration or previous data training phase for each different scenario.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21030983</identifier><identifier>PMID: 33540573</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>energy harvesting ; energy management ; energy prediction ; wind energy</subject><ispartof>Sensors (Basel, Switzerland), 2021-02, Vol.21 (3), p.983</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43</citedby><cites>FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43</cites><orcidid>0000-0003-3299-150X ; 0000-0003-3417-5821 ; 0000-0001-5338-6734 ; 0000-0001-5965-1076 ; 0000-0002-8402-9825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33540573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrería-Alonso, Sergio</creatorcontrib><creatorcontrib>Suárez-González, Andrés</creatorcontrib><creatorcontrib>Rodríguez-Pérez, Miguel</creatorcontrib><creatorcontrib>Rodríguez-Rubio, Raúl F</creatorcontrib><creatorcontrib>López-García, Cándido</creatorcontrib><title>Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting schemes of low complexity for their predictions in order to avoid squandering their scarce power and computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for predicting wind speed at short-term horizons. The performance results obtained using real data sets show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes due to its potential for achieving accurate enough predictions with very low computational burden and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to varying wind conditions and locations without requiring any particular reconfiguration or previous data training phase for each different scenario.</description><subject>energy harvesting</subject><subject>energy management</subject><subject>energy prediction</subject><subject>wind energy</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1rHDEMhk1paD4P_QNlju1hGtnyjj2XQtjmCwKFJiFHY3vkrcPseGPPBvLvM8mmS3KSkF4evehl7CuHn4gtHBfBAaHV-IntcSlkrYWAz-_6XbZfyj2AQET9he0iziTMFO6xi9MQoo80jNVdHLrqekXUVWcpk7dljMOiCilXf6mkdfZUz9NQxmzjMImuaSjT7jc9Rk_lkO0E2xc6eqsH7Pbs9GZ-UV_9Ob-cn1zVXko-1p6TUAK7BqRQXFjhGq2llK4j0soJDK5B753UDhpOBK0Cq3kDznHeBokH7HLD7ZK9N6sclzY_mWSjeR2kvDA2j9H3ZABJBYcBhW0lau2c146D8o1sgKOdWL82rNXaLanz0xey7T9AP26G-M8s0qNRulFcwwT4_gbI6WFNZTTLWDz1vR0orYsRUis-k3L24vvHRupzKiVT2J7hYF5SNNsUJ-239762yv-x4TP2b5ao</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Herrería-Alonso, Sergio</creator><creator>Suárez-González, Andrés</creator><creator>Rodríguez-Pérez, Miguel</creator><creator>Rodríguez-Rubio, Raúl F</creator><creator>López-García, Cándido</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3299-150X</orcidid><orcidid>https://orcid.org/0000-0003-3417-5821</orcidid><orcidid>https://orcid.org/0000-0001-5338-6734</orcidid><orcidid>https://orcid.org/0000-0001-5965-1076</orcidid><orcidid>https://orcid.org/0000-0002-8402-9825</orcidid></search><sort><creationdate>20210202</creationdate><title>Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices</title><author>Herrería-Alonso, Sergio ; Suárez-González, Andrés ; Rodríguez-Pérez, Miguel ; Rodríguez-Rubio, Raúl F ; López-García, Cándido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>energy harvesting</topic><topic>energy management</topic><topic>energy prediction</topic><topic>wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrería-Alonso, Sergio</creatorcontrib><creatorcontrib>Suárez-González, Andrés</creatorcontrib><creatorcontrib>Rodríguez-Pérez, Miguel</creatorcontrib><creatorcontrib>Rodríguez-Rubio, Raúl F</creatorcontrib><creatorcontrib>López-García, Cándido</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrería-Alonso, Sergio</au><au>Suárez-González, Andrés</au><au>Rodríguez-Pérez, Miguel</au><au>Rodríguez-Rubio, Raúl F</au><au>López-García, Cándido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>21</volume><issue>3</issue><spage>983</spage><pages>983-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting schemes of low complexity for their predictions in order to avoid squandering their scarce power and computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for predicting wind speed at short-term horizons. The performance results obtained using real data sets show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes due to its potential for achieving accurate enough predictions with very low computational burden and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to varying wind conditions and locations without requiring any particular reconfiguration or previous data training phase for each different scenario.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33540573</pmid><doi>10.3390/s21030983</doi><orcidid>https://orcid.org/0000-0003-3299-150X</orcidid><orcidid>https://orcid.org/0000-0003-3417-5821</orcidid><orcidid>https://orcid.org/0000-0001-5338-6734</orcidid><orcidid>https://orcid.org/0000-0001-5965-1076</orcidid><orcidid>https://orcid.org/0000-0002-8402-9825</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2021-02, Vol.21 (3), p.983 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_03e7fb3f32a94388bbc8b107c646013a |
source | PubMed Central (Open Access); Publicly Available Content Database |
subjects | energy harvesting energy management energy prediction wind energy |
title | Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Wind%20Speed%20Forecasting%20for%20Resource-Constrained%20Sensor%20Devices&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Herrer%C3%ADa-Alonso,%20Sergio&rft.date=2021-02-02&rft.volume=21&rft.issue=3&rft.spage=983&rft.pages=983-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21030983&rft_dat=%3Cproquest_doaj_%3E2487154454%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487154454&rft_id=info:pmid/33540573&rfr_iscdi=true |