Loading…

Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices

Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2021-02, Vol.21 (3), p.983
Main Authors: Herrería-Alonso, Sergio, Suárez-González, Andrés, Rodríguez-Pérez, Miguel, Rodríguez-Rubio, Raúl F, López-García, Cándido
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43
cites cdi_FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43
container_end_page
container_issue 3
container_start_page 983
container_title Sensors (Basel, Switzerland)
container_volume 21
creator Herrería-Alonso, Sergio
Suárez-González, Andrés
Rodríguez-Pérez, Miguel
Rodríguez-Rubio, Raúl F
López-García, Cándido
description Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting schemes of low complexity for their predictions in order to avoid squandering their scarce power and computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for predicting wind speed at short-term horizons. The performance results obtained using real data sets show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes due to its potential for achieving accurate enough predictions with very low computational burden and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to varying wind conditions and locations without requiring any particular reconfiguration or previous data training phase for each different scenario.
doi_str_mv 10.3390/s21030983
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03e7fb3f32a94388bbc8b107c646013a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03e7fb3f32a94388bbc8b107c646013a</doaj_id><sourcerecordid>2487154454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43</originalsourceid><addsrcrecordid>eNpVkU1rHDEMhk1paD4P_QNlju1hGtnyjj2XQtjmCwKFJiFHY3vkrcPseGPPBvLvM8mmS3KSkF4evehl7CuHn4gtHBfBAaHV-IntcSlkrYWAz-_6XbZfyj2AQET9he0iziTMFO6xi9MQoo80jNVdHLrqekXUVWcpk7dljMOiCilXf6mkdfZUz9NQxmzjMImuaSjT7jc9Rk_lkO0E2xc6eqsH7Pbs9GZ-UV_9Ob-cn1zVXko-1p6TUAK7BqRQXFjhGq2llK4j0soJDK5B753UDhpOBK0Cq3kDznHeBokH7HLD7ZK9N6sclzY_mWSjeR2kvDA2j9H3ZABJBYcBhW0lau2c146D8o1sgKOdWL82rNXaLanz0xey7T9AP26G-M8s0qNRulFcwwT4_gbI6WFNZTTLWDz1vR0orYsRUis-k3L24vvHRupzKiVT2J7hYF5SNNsUJ-239762yv-x4TP2b5ao</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487154454</pqid></control><display><type>article</type><title>Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices</title><source>PubMed Central (Open Access)</source><source>Publicly Available Content Database</source><creator>Herrería-Alonso, Sergio ; Suárez-González, Andrés ; Rodríguez-Pérez, Miguel ; Rodríguez-Rubio, Raúl F ; López-García, Cándido</creator><creatorcontrib>Herrería-Alonso, Sergio ; Suárez-González, Andrés ; Rodríguez-Pérez, Miguel ; Rodríguez-Rubio, Raúl F ; López-García, Cándido</creatorcontrib><description>Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting schemes of low complexity for their predictions in order to avoid squandering their scarce power and computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for predicting wind speed at short-term horizons. The performance results obtained using real data sets show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes due to its potential for achieving accurate enough predictions with very low computational burden and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to varying wind conditions and locations without requiring any particular reconfiguration or previous data training phase for each different scenario.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s21030983</identifier><identifier>PMID: 33540573</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>energy harvesting ; energy management ; energy prediction ; wind energy</subject><ispartof>Sensors (Basel, Switzerland), 2021-02, Vol.21 (3), p.983</ispartof><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43</citedby><cites>FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43</cites><orcidid>0000-0003-3299-150X ; 0000-0003-3417-5821 ; 0000-0001-5338-6734 ; 0000-0001-5965-1076 ; 0000-0002-8402-9825</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,37013,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33540573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrería-Alonso, Sergio</creatorcontrib><creatorcontrib>Suárez-González, Andrés</creatorcontrib><creatorcontrib>Rodríguez-Pérez, Miguel</creatorcontrib><creatorcontrib>Rodríguez-Rubio, Raúl F</creatorcontrib><creatorcontrib>López-García, Cándido</creatorcontrib><title>Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting schemes of low complexity for their predictions in order to avoid squandering their scarce power and computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for predicting wind speed at short-term horizons. The performance results obtained using real data sets show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes due to its potential for achieving accurate enough predictions with very low computational burden and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to varying wind conditions and locations without requiring any particular reconfiguration or previous data training phase for each different scenario.</description><subject>energy harvesting</subject><subject>energy management</subject><subject>energy prediction</subject><subject>wind energy</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1rHDEMhk1paD4P_QNlju1hGtnyjj2XQtjmCwKFJiFHY3vkrcPseGPPBvLvM8mmS3KSkF4evehl7CuHn4gtHBfBAaHV-IntcSlkrYWAz-_6XbZfyj2AQET9he0iziTMFO6xi9MQoo80jNVdHLrqekXUVWcpk7dljMOiCilXf6mkdfZUz9NQxmzjMImuaSjT7jc9Rk_lkO0E2xc6eqsH7Pbs9GZ-UV_9Ob-cn1zVXko-1p6TUAK7BqRQXFjhGq2llK4j0soJDK5B753UDhpOBK0Cq3kDznHeBokH7HLD7ZK9N6sclzY_mWSjeR2kvDA2j9H3ZABJBYcBhW0lau2c146D8o1sgKOdWL82rNXaLanz0xey7T9AP26G-M8s0qNRulFcwwT4_gbI6WFNZTTLWDz1vR0orYsRUis-k3L24vvHRupzKiVT2J7hYF5SNNsUJ-239762yv-x4TP2b5ao</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Herrería-Alonso, Sergio</creator><creator>Suárez-González, Andrés</creator><creator>Rodríguez-Pérez, Miguel</creator><creator>Rodríguez-Rubio, Raúl F</creator><creator>López-García, Cándido</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3299-150X</orcidid><orcidid>https://orcid.org/0000-0003-3417-5821</orcidid><orcidid>https://orcid.org/0000-0001-5338-6734</orcidid><orcidid>https://orcid.org/0000-0001-5965-1076</orcidid><orcidid>https://orcid.org/0000-0002-8402-9825</orcidid></search><sort><creationdate>20210202</creationdate><title>Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices</title><author>Herrería-Alonso, Sergio ; Suárez-González, Andrés ; Rodríguez-Pérez, Miguel ; Rodríguez-Rubio, Raúl F ; López-García, Cándido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>energy harvesting</topic><topic>energy management</topic><topic>energy prediction</topic><topic>wind energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrería-Alonso, Sergio</creatorcontrib><creatorcontrib>Suárez-González, Andrés</creatorcontrib><creatorcontrib>Rodríguez-Pérez, Miguel</creatorcontrib><creatorcontrib>Rodríguez-Rubio, Raúl F</creatorcontrib><creatorcontrib>López-García, Cándido</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrería-Alonso, Sergio</au><au>Suárez-González, Andrés</au><au>Rodríguez-Pérez, Miguel</au><au>Rodríguez-Rubio, Raúl F</au><au>López-García, Cándido</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2021-02-02</date><risdate>2021</risdate><volume>21</volume><issue>3</issue><spage>983</spage><pages>983-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Wind energy harvesting technology is one of the most popular power sources for wireless sensor networks. However, given its irregular nature, wind energy availability experiences significant variations and, therefore, wind-powered devices need reliable forecasting models to effectively adjust their energy consumption to the dynamics of energy harvesting. On the other hand, resource-constrained devices with limited hardware capacities (such as sensor nodes) must resort to forecasting schemes of low complexity for their predictions in order to avoid squandering their scarce power and computing capabilities. In this paper, we present a new efficient ARIMA-based forecasting model for predicting wind speed at short-term horizons. The performance results obtained using real data sets show that the proposed ARIMA model can be an excellent choice for wind-powered sensor nodes due to its potential for achieving accurate enough predictions with very low computational burden and memory overhead. In addition, it is very simple to setup, since it can dynamically adapt to varying wind conditions and locations without requiring any particular reconfiguration or previous data training phase for each different scenario.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>33540573</pmid><doi>10.3390/s21030983</doi><orcidid>https://orcid.org/0000-0003-3299-150X</orcidid><orcidid>https://orcid.org/0000-0003-3417-5821</orcidid><orcidid>https://orcid.org/0000-0001-5338-6734</orcidid><orcidid>https://orcid.org/0000-0001-5965-1076</orcidid><orcidid>https://orcid.org/0000-0002-8402-9825</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2021-02, Vol.21 (3), p.983
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_03e7fb3f32a94388bbc8b107c646013a
source PubMed Central (Open Access); Publicly Available Content Database
subjects energy harvesting
energy management
energy prediction
wind energy
title Efficient Wind Speed Forecasting for Resource-Constrained Sensor Devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A49%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Wind%20Speed%20Forecasting%20for%20Resource-Constrained%20Sensor%20Devices&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Herrer%C3%ADa-Alonso,%20Sergio&rft.date=2021-02-02&rft.volume=21&rft.issue=3&rft.spage=983&rft.pages=983-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s21030983&rft_dat=%3Cproquest_doaj_%3E2487154454%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c441t-c1e2723d6042712a2b688444bdee87b23fb63ccb48b061ee0970a8160bb119f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2487154454&rft_id=info:pmid/33540573&rfr_iscdi=true