Loading…
The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds
The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticle...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2023-01, Vol.13 (3), p.433 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13 |
container_end_page | |
container_issue | 3 |
container_start_page | 433 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 13 |
creator | Ma, Jinyi Wu, Yong Pan, Qin Wang, Xiangdong Li, Xiaoyong Li, Qiujuan Xu, Xiaoshuai Yao, Yuan Sun, Yang |
description | The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticles, which were then employed as catalyst in BVO and carboxylation. Characterizations revealed the morphology of the synthesized catalyst was changed from micron-sized thin sheets to smaller blocks, and then to uniform nanoparticles (size of 50 nm) having the doped SnO2 nanoparticles with a size of 29 nm. All catalysts showed high BET surface areas featuring silt-like mesopores. In determining the priority of BVO and carboxylation, an influence evaluation of the parameters showed the order to be substrate > oxidant > solvent > catalyst. Cyclic aliphatic ketones were suitable for BVO, but linear aliphatic and aromatic aldehydes for carboxylation. Coordination of (S)-binaphthol or doping of Sn into catalyst showed little influence on BVO under m-CPBA, but the Sn-doped catalyst largely increased BVO under (NH4)2S2O8 and H2O2. Calculations revealed that the catalyst containing both Al and Sn could give BVO intermediates lower energies than the Sn-beta zeolite model. The present system exhibited merits including wider substrate scope, innocuous catalytic metal, greener oxidant, as well as lower catalyst cost. |
doi_str_mv | 10.3390/nano13030433 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03e7ff75365247cf8018836c7efcff26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03e7ff75365247cf8018836c7efcff26</doaj_id><sourcerecordid>2775619280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13</originalsourceid><addsrcrecordid>eNpdUsFu1DAQjRCIVqU3PsASFw4E7DiO4wvSEkGptLCHFq7WxLGzXnntxUmg-aN-Jt5mhVp88Izee_M8tifLXhP8nlKBP3jwgVBMcUnps-y8wFzkpRDk-aP8LLschh1OSxBaM_oyO6MV55iK8jy7v91qtHJ5E_wI1lvfoxvrrIJRD-hb6KyxukN_7LhFm9iDtwqtbYrdgNKGbvymQN9TEweIo1UuFZkQUQMjuDkB6BPoWcf8p3XO9jqizZ3tYLTBP5SvdAxtUjUQ23A3u4UJZgH87FAT9ocwpeNeZS8MuEFfnuJF9uPL59vma77eXF03q3WuSsbGnOlWQFvTjnUEhOJY1QZT0IQzWhStVlhAZ0RHBaNHileEg66qlhuimCL0IrtefLsAO3mIdg9xlgGsfABC7OXpqhJTzY1JxhUrSq5MjUld00pxbZQxRZW8Pi5eh6nd605pP0ZwT0yfMt5uZR9-y_RrguJjM29PBjH8mvQwyr0dlHYOvA7TIAvOWUVEUeMkffOfdBem6NNTHVWlYARjnlTvFpWKYRiiNv-aIVgeJ0o-nij6FyOlwAI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774951007</pqid></control><display><type>article</type><title>The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Ma, Jinyi ; Wu, Yong ; Pan, Qin ; Wang, Xiangdong ; Li, Xiaoyong ; Li, Qiujuan ; Xu, Xiaoshuai ; Yao, Yuan ; Sun, Yang</creator><creatorcontrib>Ma, Jinyi ; Wu, Yong ; Pan, Qin ; Wang, Xiangdong ; Li, Xiaoyong ; Li, Qiujuan ; Xu, Xiaoshuai ; Yao, Yuan ; Sun, Yang</creatorcontrib><description>The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticles, which were then employed as catalyst in BVO and carboxylation. Characterizations revealed the morphology of the synthesized catalyst was changed from micron-sized thin sheets to smaller blocks, and then to uniform nanoparticles (size of 50 nm) having the doped SnO2 nanoparticles with a size of 29 nm. All catalysts showed high BET surface areas featuring silt-like mesopores. In determining the priority of BVO and carboxylation, an influence evaluation of the parameters showed the order to be substrate > oxidant > solvent > catalyst. Cyclic aliphatic ketones were suitable for BVO, but linear aliphatic and aromatic aldehydes for carboxylation. Coordination of (S)-binaphthol or doping of Sn into catalyst showed little influence on BVO under m-CPBA, but the Sn-doped catalyst largely increased BVO under (NH4)2S2O8 and H2O2. Calculations revealed that the catalyst containing both Al and Sn could give BVO intermediates lower energies than the Sn-beta zeolite model. The present system exhibited merits including wider substrate scope, innocuous catalytic metal, greener oxidant, as well as lower catalyst cost.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13030433</identifier><identifier>PMID: 36770394</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aerobic carboxylation ; Al-containing silicate ; Aldehydes ; Aliphatic compounds ; Aluminum ; Baeyer-Villiger oxidation ; Carbonyl compounds ; Carbonyls ; Carboxylation ; Carboxylic acids ; Catalysts ; catalytic mechanism ; Chemical synthesis ; Conversion ; Formates ; Hydrogen peroxide ; Intermediates ; Ketones ; Lactones ; Ligands ; Nanoparticles ; Oxidants ; Oxidation ; Oxidizing agents ; Silicates ; Solvents ; sol–gel ; Substrates ; Tin ; Tin dioxide ; Zeolites</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (3), p.433</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13</citedby><cites>FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13</cites><orcidid>0000-0001-7049-3179 ; 0000-0002-9460-3579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774951007/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774951007?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Ma, Jinyi</creatorcontrib><creatorcontrib>Wu, Yong</creatorcontrib><creatorcontrib>Pan, Qin</creatorcontrib><creatorcontrib>Wang, Xiangdong</creatorcontrib><creatorcontrib>Li, Xiaoyong</creatorcontrib><creatorcontrib>Li, Qiujuan</creatorcontrib><creatorcontrib>Xu, Xiaoshuai</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><title>The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds</title><title>Nanomaterials (Basel, Switzerland)</title><description>The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticles, which were then employed as catalyst in BVO and carboxylation. Characterizations revealed the morphology of the synthesized catalyst was changed from micron-sized thin sheets to smaller blocks, and then to uniform nanoparticles (size of 50 nm) having the doped SnO2 nanoparticles with a size of 29 nm. All catalysts showed high BET surface areas featuring silt-like mesopores. In determining the priority of BVO and carboxylation, an influence evaluation of the parameters showed the order to be substrate > oxidant > solvent > catalyst. Cyclic aliphatic ketones were suitable for BVO, but linear aliphatic and aromatic aldehydes for carboxylation. Coordination of (S)-binaphthol or doping of Sn into catalyst showed little influence on BVO under m-CPBA, but the Sn-doped catalyst largely increased BVO under (NH4)2S2O8 and H2O2. Calculations revealed that the catalyst containing both Al and Sn could give BVO intermediates lower energies than the Sn-beta zeolite model. The present system exhibited merits including wider substrate scope, innocuous catalytic metal, greener oxidant, as well as lower catalyst cost.</description><subject>aerobic carboxylation</subject><subject>Al-containing silicate</subject><subject>Aldehydes</subject><subject>Aliphatic compounds</subject><subject>Aluminum</subject><subject>Baeyer-Villiger oxidation</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Carboxylation</subject><subject>Carboxylic acids</subject><subject>Catalysts</subject><subject>catalytic mechanism</subject><subject>Chemical synthesis</subject><subject>Conversion</subject><subject>Formates</subject><subject>Hydrogen peroxide</subject><subject>Intermediates</subject><subject>Ketones</subject><subject>Lactones</subject><subject>Ligands</subject><subject>Nanoparticles</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Silicates</subject><subject>Solvents</subject><subject>sol–gel</subject><subject>Substrates</subject><subject>Tin</subject><subject>Tin dioxide</subject><subject>Zeolites</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUsFu1DAQjRCIVqU3PsASFw4E7DiO4wvSEkGptLCHFq7WxLGzXnntxUmg-aN-Jt5mhVp88Izee_M8tifLXhP8nlKBP3jwgVBMcUnps-y8wFzkpRDk-aP8LLschh1OSxBaM_oyO6MV55iK8jy7v91qtHJ5E_wI1lvfoxvrrIJRD-hb6KyxukN_7LhFm9iDtwqtbYrdgNKGbvymQN9TEweIo1UuFZkQUQMjuDkB6BPoWcf8p3XO9jqizZ3tYLTBP5SvdAxtUjUQ23A3u4UJZgH87FAT9ocwpeNeZS8MuEFfnuJF9uPL59vma77eXF03q3WuSsbGnOlWQFvTjnUEhOJY1QZT0IQzWhStVlhAZ0RHBaNHileEg66qlhuimCL0IrtefLsAO3mIdg9xlgGsfABC7OXpqhJTzY1JxhUrSq5MjUld00pxbZQxRZW8Pi5eh6nd605pP0ZwT0yfMt5uZR9-y_RrguJjM29PBjH8mvQwyr0dlHYOvA7TIAvOWUVEUeMkffOfdBem6NNTHVWlYARjnlTvFpWKYRiiNv-aIVgeJ0o-nij6FyOlwAI</recordid><startdate>20230120</startdate><enddate>20230120</enddate><creator>Ma, Jinyi</creator><creator>Wu, Yong</creator><creator>Pan, Qin</creator><creator>Wang, Xiangdong</creator><creator>Li, Xiaoyong</creator><creator>Li, Qiujuan</creator><creator>Xu, Xiaoshuai</creator><creator>Yao, Yuan</creator><creator>Sun, Yang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7049-3179</orcidid><orcidid>https://orcid.org/0000-0002-9460-3579</orcidid></search><sort><creationdate>20230120</creationdate><title>The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds</title><author>Ma, Jinyi ; Wu, Yong ; Pan, Qin ; Wang, Xiangdong ; Li, Xiaoyong ; Li, Qiujuan ; Xu, Xiaoshuai ; Yao, Yuan ; Sun, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aerobic carboxylation</topic><topic>Al-containing silicate</topic><topic>Aldehydes</topic><topic>Aliphatic compounds</topic><topic>Aluminum</topic><topic>Baeyer-Villiger oxidation</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Carboxylation</topic><topic>Carboxylic acids</topic><topic>Catalysts</topic><topic>catalytic mechanism</topic><topic>Chemical synthesis</topic><topic>Conversion</topic><topic>Formates</topic><topic>Hydrogen peroxide</topic><topic>Intermediates</topic><topic>Ketones</topic><topic>Lactones</topic><topic>Ligands</topic><topic>Nanoparticles</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Silicates</topic><topic>Solvents</topic><topic>sol–gel</topic><topic>Substrates</topic><topic>Tin</topic><topic>Tin dioxide</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jinyi</creatorcontrib><creatorcontrib>Wu, Yong</creatorcontrib><creatorcontrib>Pan, Qin</creatorcontrib><creatorcontrib>Wang, Xiangdong</creatorcontrib><creatorcontrib>Li, Xiaoyong</creatorcontrib><creatorcontrib>Li, Qiujuan</creatorcontrib><creatorcontrib>Xu, Xiaoshuai</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jinyi</au><au>Wu, Yong</au><au>Pan, Qin</au><au>Wang, Xiangdong</au><au>Li, Xiaoyong</au><au>Li, Qiujuan</au><au>Xu, Xiaoshuai</au><au>Yao, Yuan</au><au>Sun, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2023-01-20</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>433</spage><pages>433-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticles, which were then employed as catalyst in BVO and carboxylation. Characterizations revealed the morphology of the synthesized catalyst was changed from micron-sized thin sheets to smaller blocks, and then to uniform nanoparticles (size of 50 nm) having the doped SnO2 nanoparticles with a size of 29 nm. All catalysts showed high BET surface areas featuring silt-like mesopores. In determining the priority of BVO and carboxylation, an influence evaluation of the parameters showed the order to be substrate > oxidant > solvent > catalyst. Cyclic aliphatic ketones were suitable for BVO, but linear aliphatic and aromatic aldehydes for carboxylation. Coordination of (S)-binaphthol or doping of Sn into catalyst showed little influence on BVO under m-CPBA, but the Sn-doped catalyst largely increased BVO under (NH4)2S2O8 and H2O2. Calculations revealed that the catalyst containing both Al and Sn could give BVO intermediates lower energies than the Sn-beta zeolite model. The present system exhibited merits including wider substrate scope, innocuous catalytic metal, greener oxidant, as well as lower catalyst cost.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36770394</pmid><doi>10.3390/nano13030433</doi><orcidid>https://orcid.org/0000-0001-7049-3179</orcidid><orcidid>https://orcid.org/0000-0002-9460-3579</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (3), p.433 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_03e7ff75365247cf8018836c7efcff26 |
source | Open Access: PubMed Central; Publicly Available Content Database |
subjects | aerobic carboxylation Al-containing silicate Aldehydes Aliphatic compounds Aluminum Baeyer-Villiger oxidation Carbonyl compounds Carbonyls Carboxylation Carboxylic acids Catalysts catalytic mechanism Chemical synthesis Conversion Formates Hydrogen peroxide Intermediates Ketones Lactones Ligands Nanoparticles Oxidants Oxidation Oxidizing agents Silicates Solvents sol–gel Substrates Tin Tin dioxide Zeolites |
title | The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Al-Containing%20Silicates%20Modified%20with%20Organic%20Ligands%20and%20SnO2%20Nanoparticles%20for%20Catalytic%20Baeyer-Villiger%20Oxidation%20and%20Aerobic%20Carboxylation%20of%20Carbonyl%20Compounds&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Ma,%20Jinyi&rft.date=2023-01-20&rft.volume=13&rft.issue=3&rft.spage=433&rft.pages=433-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13030433&rft_dat=%3Cproquest_doaj_%3E2775619280%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774951007&rft_id=info:pmid/36770394&rfr_iscdi=true |