Loading…

The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds

The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticle...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2023-01, Vol.13 (3), p.433
Main Authors: Ma, Jinyi, Wu, Yong, Pan, Qin, Wang, Xiangdong, Li, Xiaoyong, Li, Qiujuan, Xu, Xiaoshuai, Yao, Yuan, Sun, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13
cites cdi_FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13
container_end_page
container_issue 3
container_start_page 433
container_title Nanomaterials (Basel, Switzerland)
container_volume 13
creator Ma, Jinyi
Wu, Yong
Pan, Qin
Wang, Xiangdong
Li, Xiaoyong
Li, Qiujuan
Xu, Xiaoshuai
Yao, Yuan
Sun, Yang
description The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticles, which were then employed as catalyst in BVO and carboxylation. Characterizations revealed the morphology of the synthesized catalyst was changed from micron-sized thin sheets to smaller blocks, and then to uniform nanoparticles (size of 50 nm) having the doped SnO2 nanoparticles with a size of 29 nm. All catalysts showed high BET surface areas featuring silt-like mesopores. In determining the priority of BVO and carboxylation, an influence evaluation of the parameters showed the order to be substrate > oxidant > solvent > catalyst. Cyclic aliphatic ketones were suitable for BVO, but linear aliphatic and aromatic aldehydes for carboxylation. Coordination of (S)-binaphthol or doping of Sn into catalyst showed little influence on BVO under m-CPBA, but the Sn-doped catalyst largely increased BVO under (NH4)2S2O8 and H2O2. Calculations revealed that the catalyst containing both Al and Sn could give BVO intermediates lower energies than the Sn-beta zeolite model. The present system exhibited merits including wider substrate scope, innocuous catalytic metal, greener oxidant, as well as lower catalyst cost.
doi_str_mv 10.3390/nano13030433
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_03e7ff75365247cf8018836c7efcff26</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_03e7ff75365247cf8018836c7efcff26</doaj_id><sourcerecordid>2775619280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13</originalsourceid><addsrcrecordid>eNpdUsFu1DAQjRCIVqU3PsASFw4E7DiO4wvSEkGptLCHFq7WxLGzXnntxUmg-aN-Jt5mhVp88Izee_M8tifLXhP8nlKBP3jwgVBMcUnps-y8wFzkpRDk-aP8LLschh1OSxBaM_oyO6MV55iK8jy7v91qtHJ5E_wI1lvfoxvrrIJRD-hb6KyxukN_7LhFm9iDtwqtbYrdgNKGbvymQN9TEweIo1UuFZkQUQMjuDkB6BPoWcf8p3XO9jqizZ3tYLTBP5SvdAxtUjUQ23A3u4UJZgH87FAT9ocwpeNeZS8MuEFfnuJF9uPL59vma77eXF03q3WuSsbGnOlWQFvTjnUEhOJY1QZT0IQzWhStVlhAZ0RHBaNHileEg66qlhuimCL0IrtefLsAO3mIdg9xlgGsfABC7OXpqhJTzY1JxhUrSq5MjUld00pxbZQxRZW8Pi5eh6nd605pP0ZwT0yfMt5uZR9-y_RrguJjM29PBjH8mvQwyr0dlHYOvA7TIAvOWUVEUeMkffOfdBem6NNTHVWlYARjnlTvFpWKYRiiNv-aIVgeJ0o-nij6FyOlwAI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774951007</pqid></control><display><type>article</type><title>The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><creator>Ma, Jinyi ; Wu, Yong ; Pan, Qin ; Wang, Xiangdong ; Li, Xiaoyong ; Li, Qiujuan ; Xu, Xiaoshuai ; Yao, Yuan ; Sun, Yang</creator><creatorcontrib>Ma, Jinyi ; Wu, Yong ; Pan, Qin ; Wang, Xiangdong ; Li, Xiaoyong ; Li, Qiujuan ; Xu, Xiaoshuai ; Yao, Yuan ; Sun, Yang</creatorcontrib><description>The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticles, which were then employed as catalyst in BVO and carboxylation. Characterizations revealed the morphology of the synthesized catalyst was changed from micron-sized thin sheets to smaller blocks, and then to uniform nanoparticles (size of 50 nm) having the doped SnO2 nanoparticles with a size of 29 nm. All catalysts showed high BET surface areas featuring silt-like mesopores. In determining the priority of BVO and carboxylation, an influence evaluation of the parameters showed the order to be substrate &gt; oxidant &gt; solvent &gt; catalyst. Cyclic aliphatic ketones were suitable for BVO, but linear aliphatic and aromatic aldehydes for carboxylation. Coordination of (S)-binaphthol or doping of Sn into catalyst showed little influence on BVO under m-CPBA, but the Sn-doped catalyst largely increased BVO under (NH4)2S2O8 and H2O2. Calculations revealed that the catalyst containing both Al and Sn could give BVO intermediates lower energies than the Sn-beta zeolite model. The present system exhibited merits including wider substrate scope, innocuous catalytic metal, greener oxidant, as well as lower catalyst cost.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano13030433</identifier><identifier>PMID: 36770394</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aerobic carboxylation ; Al-containing silicate ; Aldehydes ; Aliphatic compounds ; Aluminum ; Baeyer-Villiger oxidation ; Carbonyl compounds ; Carbonyls ; Carboxylation ; Carboxylic acids ; Catalysts ; catalytic mechanism ; Chemical synthesis ; Conversion ; Formates ; Hydrogen peroxide ; Intermediates ; Ketones ; Lactones ; Ligands ; Nanoparticles ; Oxidants ; Oxidation ; Oxidizing agents ; Silicates ; Solvents ; sol–gel ; Substrates ; Tin ; Tin dioxide ; Zeolites</subject><ispartof>Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (3), p.433</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13</citedby><cites>FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13</cites><orcidid>0000-0001-7049-3179 ; 0000-0002-9460-3579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2774951007/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2774951007?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Ma, Jinyi</creatorcontrib><creatorcontrib>Wu, Yong</creatorcontrib><creatorcontrib>Pan, Qin</creatorcontrib><creatorcontrib>Wang, Xiangdong</creatorcontrib><creatorcontrib>Li, Xiaoyong</creatorcontrib><creatorcontrib>Li, Qiujuan</creatorcontrib><creatorcontrib>Xu, Xiaoshuai</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><title>The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds</title><title>Nanomaterials (Basel, Switzerland)</title><description>The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticles, which were then employed as catalyst in BVO and carboxylation. Characterizations revealed the morphology of the synthesized catalyst was changed from micron-sized thin sheets to smaller blocks, and then to uniform nanoparticles (size of 50 nm) having the doped SnO2 nanoparticles with a size of 29 nm. All catalysts showed high BET surface areas featuring silt-like mesopores. In determining the priority of BVO and carboxylation, an influence evaluation of the parameters showed the order to be substrate &gt; oxidant &gt; solvent &gt; catalyst. Cyclic aliphatic ketones were suitable for BVO, but linear aliphatic and aromatic aldehydes for carboxylation. Coordination of (S)-binaphthol or doping of Sn into catalyst showed little influence on BVO under m-CPBA, but the Sn-doped catalyst largely increased BVO under (NH4)2S2O8 and H2O2. Calculations revealed that the catalyst containing both Al and Sn could give BVO intermediates lower energies than the Sn-beta zeolite model. The present system exhibited merits including wider substrate scope, innocuous catalytic metal, greener oxidant, as well as lower catalyst cost.</description><subject>aerobic carboxylation</subject><subject>Al-containing silicate</subject><subject>Aldehydes</subject><subject>Aliphatic compounds</subject><subject>Aluminum</subject><subject>Baeyer-Villiger oxidation</subject><subject>Carbonyl compounds</subject><subject>Carbonyls</subject><subject>Carboxylation</subject><subject>Carboxylic acids</subject><subject>Catalysts</subject><subject>catalytic mechanism</subject><subject>Chemical synthesis</subject><subject>Conversion</subject><subject>Formates</subject><subject>Hydrogen peroxide</subject><subject>Intermediates</subject><subject>Ketones</subject><subject>Lactones</subject><subject>Ligands</subject><subject>Nanoparticles</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Silicates</subject><subject>Solvents</subject><subject>sol–gel</subject><subject>Substrates</subject><subject>Tin</subject><subject>Tin dioxide</subject><subject>Zeolites</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdUsFu1DAQjRCIVqU3PsASFw4E7DiO4wvSEkGptLCHFq7WxLGzXnntxUmg-aN-Jt5mhVp88Izee_M8tifLXhP8nlKBP3jwgVBMcUnps-y8wFzkpRDk-aP8LLschh1OSxBaM_oyO6MV55iK8jy7v91qtHJ5E_wI1lvfoxvrrIJRD-hb6KyxukN_7LhFm9iDtwqtbYrdgNKGbvymQN9TEweIo1UuFZkQUQMjuDkB6BPoWcf8p3XO9jqizZ3tYLTBP5SvdAxtUjUQ23A3u4UJZgH87FAT9ocwpeNeZS8MuEFfnuJF9uPL59vma77eXF03q3WuSsbGnOlWQFvTjnUEhOJY1QZT0IQzWhStVlhAZ0RHBaNHileEg66qlhuimCL0IrtefLsAO3mIdg9xlgGsfABC7OXpqhJTzY1JxhUrSq5MjUld00pxbZQxRZW8Pi5eh6nd605pP0ZwT0yfMt5uZR9-y_RrguJjM29PBjH8mvQwyr0dlHYOvA7TIAvOWUVEUeMkffOfdBem6NNTHVWlYARjnlTvFpWKYRiiNv-aIVgeJ0o-nij6FyOlwAI</recordid><startdate>20230120</startdate><enddate>20230120</enddate><creator>Ma, Jinyi</creator><creator>Wu, Yong</creator><creator>Pan, Qin</creator><creator>Wang, Xiangdong</creator><creator>Li, Xiaoyong</creator><creator>Li, Qiujuan</creator><creator>Xu, Xiaoshuai</creator><creator>Yao, Yuan</creator><creator>Sun, Yang</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7049-3179</orcidid><orcidid>https://orcid.org/0000-0002-9460-3579</orcidid></search><sort><creationdate>20230120</creationdate><title>The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds</title><author>Ma, Jinyi ; Wu, Yong ; Pan, Qin ; Wang, Xiangdong ; Li, Xiaoyong ; Li, Qiujuan ; Xu, Xiaoshuai ; Yao, Yuan ; Sun, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aerobic carboxylation</topic><topic>Al-containing silicate</topic><topic>Aldehydes</topic><topic>Aliphatic compounds</topic><topic>Aluminum</topic><topic>Baeyer-Villiger oxidation</topic><topic>Carbonyl compounds</topic><topic>Carbonyls</topic><topic>Carboxylation</topic><topic>Carboxylic acids</topic><topic>Catalysts</topic><topic>catalytic mechanism</topic><topic>Chemical synthesis</topic><topic>Conversion</topic><topic>Formates</topic><topic>Hydrogen peroxide</topic><topic>Intermediates</topic><topic>Ketones</topic><topic>Lactones</topic><topic>Ligands</topic><topic>Nanoparticles</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Silicates</topic><topic>Solvents</topic><topic>sol–gel</topic><topic>Substrates</topic><topic>Tin</topic><topic>Tin dioxide</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Jinyi</creatorcontrib><creatorcontrib>Wu, Yong</creatorcontrib><creatorcontrib>Pan, Qin</creatorcontrib><creatorcontrib>Wang, Xiangdong</creatorcontrib><creatorcontrib>Li, Xiaoyong</creatorcontrib><creatorcontrib>Li, Qiujuan</creatorcontrib><creatorcontrib>Xu, Xiaoshuai</creatorcontrib><creatorcontrib>Yao, Yuan</creatorcontrib><creatorcontrib>Sun, Yang</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Jinyi</au><au>Wu, Yong</au><au>Pan, Qin</au><au>Wang, Xiangdong</au><au>Li, Xiaoyong</au><au>Li, Qiujuan</au><au>Xu, Xiaoshuai</au><au>Yao, Yuan</au><au>Sun, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2023-01-20</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>433</spage><pages>433-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>The Baeyer-Villiger Oxidation (BVO) of ketones and aldehydes produce lactones and formates, while aerobic carboxylation of aldehydes manufactures carboxylic acids, both having high added value. This work prepared a series of Al-containing silicates modified with organic ligands and SnO2 nanoparticles, which were then employed as catalyst in BVO and carboxylation. Characterizations revealed the morphology of the synthesized catalyst was changed from micron-sized thin sheets to smaller blocks, and then to uniform nanoparticles (size of 50 nm) having the doped SnO2 nanoparticles with a size of 29 nm. All catalysts showed high BET surface areas featuring silt-like mesopores. In determining the priority of BVO and carboxylation, an influence evaluation of the parameters showed the order to be substrate &gt; oxidant &gt; solvent &gt; catalyst. Cyclic aliphatic ketones were suitable for BVO, but linear aliphatic and aromatic aldehydes for carboxylation. Coordination of (S)-binaphthol or doping of Sn into catalyst showed little influence on BVO under m-CPBA, but the Sn-doped catalyst largely increased BVO under (NH4)2S2O8 and H2O2. Calculations revealed that the catalyst containing both Al and Sn could give BVO intermediates lower energies than the Sn-beta zeolite model. The present system exhibited merits including wider substrate scope, innocuous catalytic metal, greener oxidant, as well as lower catalyst cost.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>36770394</pmid><doi>10.3390/nano13030433</doi><orcidid>https://orcid.org/0000-0001-7049-3179</orcidid><orcidid>https://orcid.org/0000-0002-9460-3579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2023-01, Vol.13 (3), p.433
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_03e7ff75365247cf8018836c7efcff26
source Open Access: PubMed Central; Publicly Available Content Database
subjects aerobic carboxylation
Al-containing silicate
Aldehydes
Aliphatic compounds
Aluminum
Baeyer-Villiger oxidation
Carbonyl compounds
Carbonyls
Carboxylation
Carboxylic acids
Catalysts
catalytic mechanism
Chemical synthesis
Conversion
Formates
Hydrogen peroxide
Intermediates
Ketones
Lactones
Ligands
Nanoparticles
Oxidants
Oxidation
Oxidizing agents
Silicates
Solvents
sol–gel
Substrates
Tin
Tin dioxide
Zeolites
title The Al-Containing Silicates Modified with Organic Ligands and SnO2 Nanoparticles for Catalytic Baeyer-Villiger Oxidation and Aerobic Carboxylation of Carbonyl Compounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A41%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Al-Containing%20Silicates%20Modified%20with%20Organic%20Ligands%20and%20SnO2%20Nanoparticles%20for%20Catalytic%20Baeyer-Villiger%20Oxidation%20and%20Aerobic%20Carboxylation%20of%20Carbonyl%20Compounds&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Ma,%20Jinyi&rft.date=2023-01-20&rft.volume=13&rft.issue=3&rft.spage=433&rft.pages=433-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano13030433&rft_dat=%3Cproquest_doaj_%3E2775619280%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-5eb9ab83d5d1a9c70c8f03ae175322bec09adf9d3953c8f07617ae66b7f1c5c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2774951007&rft_id=info:pmid/36770394&rfr_iscdi=true