Loading…
Energetic-Environmental-Economic Feasibility and Impact Assessment of Grid-Connected Photovoltaic System in Wastewater Treatment Plant: Case Study
Wastewater treatment plants and power generation constitute inseparable parts of present society. So the growth of wastewater treatment plants is accompanied by an increase in the energy consumption, and a sustainable development implies the use of renewable energy sources on a large scale in the po...
Saved in:
Published in: | Energies (Basel) 2021-01, Vol.14 (1), p.100 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wastewater treatment plants and power generation constitute inseparable parts of present society. So the growth of wastewater treatment plants is accompanied by an increase in the energy consumption, and a sustainable development implies the use of renewable energy sources on a large scale in the power generation. A case study of the synergy between wastewater treatment plants and photovoltaic systems, aiming to improve the energetic, environmental and economic impacts, is presented. Based on data acquisition, the energy consumption analysis of wastewater treatment plant reveals that the highest demand is during April, and the lowest is during November. The placement of photovoltaic modules is designed to maximize the use of free space on the technological area of wastewater treatment plant in order to obtain a power output as high as possible. The peak consumption of wastewater treatment plant occurs in April, however the peak production of the photovoltaic is in July, so electrochemical batteries can partly compensate for this mismatch. The impact of the photovoltaic system connectivity on power grid is assessed by means of the matching-index method and the storage battery significantly improves this parameter. Carbon credit and energy payback time are used to assess the environmental impact. The results prove that the photovoltaic system mitigates 12,118 tons of carbon and, respectively, the embedded energy is compensated by production in 8 ½ years. The economic impact of the photovoltaic system is analyzed by the levelized cost of energy, and the results show that the price of energy from the photovoltaic source is below the current market price of energy. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en14010100 |