Loading…

Cluster Analysis of IR Thermography Data for Differentiating Glass Types in Historical Leaded-Glass Windows

Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-06, Vol.10 (12), p.4255
Main Authors: Hillen, Michaël, Legrand, Stijn, Dirkx, Yarince, Janssens, Koen, Van der Snickt, Geert, Caen, Joost, Steenackers, Gunther
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-bc4566c76981ad5e67efc0faeb573548c9f81e76982c19ab201ac3a9163a50b13
cites cdi_FETCH-LOGICAL-c403t-bc4566c76981ad5e67efc0faeb573548c9f81e76982c19ab201ac3a9163a50b13
container_end_page
container_issue 12
container_start_page 4255
container_title Applied sciences
container_volume 10
creator Hillen, Michaël
Legrand, Stijn
Dirkx, Yarince
Janssens, Koen
Van der Snickt, Geert
Caen, Joost
Steenackers, Gunther
description Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.
doi_str_mv 10.3390/app10124255
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_04131994146f4821bba35d7abc9a2f0e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A638409132</galeid><doaj_id>oai_doaj_org_article_04131994146f4821bba35d7abc9a2f0e</doaj_id><sourcerecordid>A638409132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-bc4566c76981ad5e67efc0faeb573548c9f81e76982c19ab201ac3a9163a50b13</originalsourceid><addsrcrecordid>eNpNUU1r3DAQNaWFhjSn_gFBjsWpvixbx2XTJgsLhbKlRzGWRxttvJYraSn776uNQ8nMYYaZ9x7Dm6r6zOidEJp-hXlmlHHJm-ZddcVpq2ohWfv-Tf-xuknpQEtoJjpGr6rn9XhKGSNZTTCek08kOLL5SXZPGI9hH2F-OpN7yEBciOTeO4cRp-wh-2lPHkZIiezOMybiJ_LoUw7RWxjJFmHAoV4Av_00hL_pU_XBwZjw5rVeV7--f9utH-vtj4fNerWtraQi172VjVK2VbpjMDSoWnSWOsC-aUUjO6tdx_Cy5pZp6DllYAVopgQ0tGfiutosukOAg5mjP0I8mwDevAxC3BuI2dsRDZVMMK0lk8rJjrO-B9EMLfRWA3cUi9btojXH8OeEKZtDOMXiVTK8GKq0kowW1N2C2kMR9ZMLOYItOeDR2zCh82W-UqKTF-d5IXxZCDaGlCK6_2cyai7fNG--Kf4BJ-iQ2w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2417696410</pqid></control><display><type>article</type><title>Cluster Analysis of IR Thermography Data for Differentiating Glass Types in Historical Leaded-Glass Windows</title><source>Publicly Available Content (ProQuest)</source><creator>Hillen, Michaël ; Legrand, Stijn ; Dirkx, Yarince ; Janssens, Koen ; Van der Snickt, Geert ; Caen, Joost ; Steenackers, Gunther</creator><creatorcontrib>Hillen, Michaël ; Legrand, Stijn ; Dirkx, Yarince ; Janssens, Koen ; Van der Snickt, Geert ; Caen, Joost ; Steenackers, Gunther</creatorcontrib><description>Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app10124255</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Cameras ; Chemical properties ; Cluster analysis ; Clustering ; Conservation ; Cooling ; Destructive testing ; Epoxy resins ; Fourier transforms ; Glass ; hierarchical clustering ; History ; Infrared analysis ; Infrared imaging ; Infrared thermometers ; Inspection ; IR thermography ; k-means clustering ; leaded-glass windows ; Materials ; Metal ions ; Nondestructive testing ; Paints ; Principal components analysis ; Statistics ; Thermography ; Windows</subject><ispartof>Applied sciences, 2020-06, Vol.10 (12), p.4255</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-bc4566c76981ad5e67efc0faeb573548c9f81e76982c19ab201ac3a9163a50b13</citedby><cites>FETCH-LOGICAL-c403t-bc4566c76981ad5e67efc0faeb573548c9f81e76982c19ab201ac3a9163a50b13</cites><orcidid>0000-0002-1991-2443 ; 0000-0001-9985-0678 ; 0000-0001-5859-8402 ; 0000-0002-6546-7395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2417696410/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2417696410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Hillen, Michaël</creatorcontrib><creatorcontrib>Legrand, Stijn</creatorcontrib><creatorcontrib>Dirkx, Yarince</creatorcontrib><creatorcontrib>Janssens, Koen</creatorcontrib><creatorcontrib>Van der Snickt, Geert</creatorcontrib><creatorcontrib>Caen, Joost</creatorcontrib><creatorcontrib>Steenackers, Gunther</creatorcontrib><title>Cluster Analysis of IR Thermography Data for Differentiating Glass Types in Historical Leaded-Glass Windows</title><title>Applied sciences</title><description>Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.</description><subject>Analysis</subject><subject>Cameras</subject><subject>Chemical properties</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Conservation</subject><subject>Cooling</subject><subject>Destructive testing</subject><subject>Epoxy resins</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>hierarchical clustering</subject><subject>History</subject><subject>Infrared analysis</subject><subject>Infrared imaging</subject><subject>Infrared thermometers</subject><subject>Inspection</subject><subject>IR thermography</subject><subject>k-means clustering</subject><subject>leaded-glass windows</subject><subject>Materials</subject><subject>Metal ions</subject><subject>Nondestructive testing</subject><subject>Paints</subject><subject>Principal components analysis</subject><subject>Statistics</subject><subject>Thermography</subject><subject>Windows</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1r3DAQNaWFhjSn_gFBjsWpvixbx2XTJgsLhbKlRzGWRxttvJYraSn776uNQ8nMYYaZ9x7Dm6r6zOidEJp-hXlmlHHJm-ZddcVpq2ohWfv-Tf-xuknpQEtoJjpGr6rn9XhKGSNZTTCek08kOLL5SXZPGI9hH2F-OpN7yEBciOTeO4cRp-wh-2lPHkZIiezOMybiJ_LoUw7RWxjJFmHAoV4Av_00hL_pU_XBwZjw5rVeV7--f9utH-vtj4fNerWtraQi172VjVK2VbpjMDSoWnSWOsC-aUUjO6tdx_Cy5pZp6DllYAVopgQ0tGfiutosukOAg5mjP0I8mwDevAxC3BuI2dsRDZVMMK0lk8rJjrO-B9EMLfRWA3cUi9btojXH8OeEKZtDOMXiVTK8GKq0kowW1N2C2kMR9ZMLOYItOeDR2zCh82W-UqKTF-d5IXxZCDaGlCK6_2cyai7fNG--Kf4BJ-iQ2w</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Hillen, Michaël</creator><creator>Legrand, Stijn</creator><creator>Dirkx, Yarince</creator><creator>Janssens, Koen</creator><creator>Van der Snickt, Geert</creator><creator>Caen, Joost</creator><creator>Steenackers, Gunther</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1991-2443</orcidid><orcidid>https://orcid.org/0000-0001-9985-0678</orcidid><orcidid>https://orcid.org/0000-0001-5859-8402</orcidid><orcidid>https://orcid.org/0000-0002-6546-7395</orcidid></search><sort><creationdate>20200601</creationdate><title>Cluster Analysis of IR Thermography Data for Differentiating Glass Types in Historical Leaded-Glass Windows</title><author>Hillen, Michaël ; Legrand, Stijn ; Dirkx, Yarince ; Janssens, Koen ; Van der Snickt, Geert ; Caen, Joost ; Steenackers, Gunther</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-bc4566c76981ad5e67efc0faeb573548c9f81e76982c19ab201ac3a9163a50b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Cameras</topic><topic>Chemical properties</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Conservation</topic><topic>Cooling</topic><topic>Destructive testing</topic><topic>Epoxy resins</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>hierarchical clustering</topic><topic>History</topic><topic>Infrared analysis</topic><topic>Infrared imaging</topic><topic>Infrared thermometers</topic><topic>Inspection</topic><topic>IR thermography</topic><topic>k-means clustering</topic><topic>leaded-glass windows</topic><topic>Materials</topic><topic>Metal ions</topic><topic>Nondestructive testing</topic><topic>Paints</topic><topic>Principal components analysis</topic><topic>Statistics</topic><topic>Thermography</topic><topic>Windows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hillen, Michaël</creatorcontrib><creatorcontrib>Legrand, Stijn</creatorcontrib><creatorcontrib>Dirkx, Yarince</creatorcontrib><creatorcontrib>Janssens, Koen</creatorcontrib><creatorcontrib>Van der Snickt, Geert</creatorcontrib><creatorcontrib>Caen, Joost</creatorcontrib><creatorcontrib>Steenackers, Gunther</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hillen, Michaël</au><au>Legrand, Stijn</au><au>Dirkx, Yarince</au><au>Janssens, Koen</au><au>Van der Snickt, Geert</au><au>Caen, Joost</au><au>Steenackers, Gunther</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cluster Analysis of IR Thermography Data for Differentiating Glass Types in Historical Leaded-Glass Windows</atitle><jtitle>Applied sciences</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>10</volume><issue>12</issue><spage>4255</spage><pages>4255-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Infrared thermography is a fast, non-destructive and contactless testing technique which is increasingly used in heritage science. The aim of this study was to assess the ability of infrared thermography, in combination with a data clustering approach, to differentiate between the different types of historical glass that were included in a colorless leaded-glass windows during previous restoration interventions. Inspection of the thermograms and the application of two data mining techniques on the thermal data, i.e., k-means clustering and hierarchical clustering, allowed identifying different groups of window panes that show a different thermal behavior. Both clustering approaches arrive at similar groupings of the glass with a clear separation of three types. However, the lead cames that hold the glass panes appear to have a substantial impact on the thermal behavior of the surrounding glass, thus preventing classification of the smallest glass panes. For the larger panes, this was not a critical issue as the center of the glass remained unaffected. Subtle visual color differences between panes, implying a variation in coloring metal ions, was not always distinguished by IRT. Nevertheless, data clustering assisted infrared thermography shows potential as an efficient and swift method for documenting the material intervention history of leaded-glass windows during or in preparation of conservation treatments.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app10124255</doi><orcidid>https://orcid.org/0000-0002-1991-2443</orcidid><orcidid>https://orcid.org/0000-0001-9985-0678</orcidid><orcidid>https://orcid.org/0000-0001-5859-8402</orcidid><orcidid>https://orcid.org/0000-0002-6546-7395</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2020-06, Vol.10 (12), p.4255
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_04131994146f4821bba35d7abc9a2f0e
source Publicly Available Content (ProQuest)
subjects Analysis
Cameras
Chemical properties
Cluster analysis
Clustering
Conservation
Cooling
Destructive testing
Epoxy resins
Fourier transforms
Glass
hierarchical clustering
History
Infrared analysis
Infrared imaging
Infrared thermometers
Inspection
IR thermography
k-means clustering
leaded-glass windows
Materials
Metal ions
Nondestructive testing
Paints
Principal components analysis
Statistics
Thermography
Windows
title Cluster Analysis of IR Thermography Data for Differentiating Glass Types in Historical Leaded-Glass Windows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cluster%20Analysis%20of%20IR%20Thermography%20Data%20for%20Differentiating%20Glass%20Types%20in%20Historical%20Leaded-Glass%20Windows&rft.jtitle=Applied%20sciences&rft.au=Hillen,%20Micha%C3%ABl&rft.date=2020-06-01&rft.volume=10&rft.issue=12&rft.spage=4255&rft.pages=4255-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app10124255&rft_dat=%3Cgale_doaj_%3EA638409132%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-bc4566c76981ad5e67efc0faeb573548c9f81e76982c19ab201ac3a9163a50b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2417696410&rft_id=info:pmid/&rft_galeid=A638409132&rfr_iscdi=true