Loading…
Electroosmosis in nanopores: computational methods and technological applications
Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacer...
Saved in:
Published in: | Advances in physics: X 2022-12, Vol.7 (1) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Advances in physics: X |
container_volume | 7 |
creator | Gubbiotti, Alberto Baldelli, Matteo Di Muccio, Giovanni Malgaretti, Paolo Marbach, Sophie Chinappi, Mauro |
description | Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices. |
doi_str_mv | 10.1080/23746149.2022.2036638 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_04176d0961b2498c99f7c1562a6af68d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_04176d0961b2498c99f7c1562a6af68d</doaj_id><sourcerecordid>2717538418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863</originalsourceid><addsrcrecordid>eNp9UU1LxDAQLaLgov4EoeB5NUmTNPGkiF8giKDnkObDzdJ2apJF_PemroonLzPDm_feMLyqOsboFCOBzkjTUo6pPCWIkFIazhuxUy1mfDkvdv_M-9VRSmuEEOZtETeL6um6dyZHgDRACqkOYz3qESaILp3XBoZpk3UOMOq-HlxegU21Hm2dnVmN0MNrMGWjp6kvw8xLh9We131yR9_9oHq5uX6-uls-PN7eX10-LA1lOC-ZbCgznUPOWMEoJ0JIblpCXUdaxwqEfOdx56yR1BaC9NZRUx50hlHBm4PqfutrQa_VFMOg44cCHdQXAPFV6ZiD6Z1CFLfcIslxR6gURkrfGsw40Vx7LmzxOtl6TRHeNi5ltYZNLD8nRVrcskZQLAqLbVkmQkrR-d-rGKk5DPUThprDUN9hFN3FVhdGD3HQ7xB7q7L-6CH6qEcTkmr-t_gE1OCQeg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717538418</pqid></control><display><type>article</type><title>Electroosmosis in nanopores: computational methods and technological applications</title><source>Taylor & Francis Open Access</source><source>Access via ProQuest (Open Access)</source><creator>Gubbiotti, Alberto ; Baldelli, Matteo ; Di Muccio, Giovanni ; Malgaretti, Paolo ; Marbach, Sophie ; Chinappi, Mauro</creator><creatorcontrib>Gubbiotti, Alberto ; Baldelli, Matteo ; Di Muccio, Giovanni ; Malgaretti, Paolo ; Marbach, Sophie ; Chinappi, Mauro</creatorcontrib><description>Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices.</description><identifier>ISSN: 2374-6149</identifier><identifier>EISSN: 2374-6149</identifier><identifier>DOI: 10.1080/23746149.2022.2036638</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Biological properties ; Electric fields ; Electrolytes ; Electroosmosis ; Electroosmotic flow ; Fluidics ; Mass transport ; mesoscale models ; molecular dynamics ; Nanofluids ; nanopore sensing ; PNP-NS ; Sensors ; Transport properties</subject><ispartof>Advances in physics: X, 2022-12, Vol.7 (1)</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863</citedby><cites>FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863</cites><orcidid>0000-0002-4509-1247 ; 0000-0002-2427-2065 ; 0000-0001-6152-8800 ; 0000-0002-8190-601X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23746149.2022.2036638$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2717538418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27502,27924,27925,37012,44590,59143,59144</link.rule.ids></links><search><creatorcontrib>Gubbiotti, Alberto</creatorcontrib><creatorcontrib>Baldelli, Matteo</creatorcontrib><creatorcontrib>Di Muccio, Giovanni</creatorcontrib><creatorcontrib>Malgaretti, Paolo</creatorcontrib><creatorcontrib>Marbach, Sophie</creatorcontrib><creatorcontrib>Chinappi, Mauro</creatorcontrib><title>Electroosmosis in nanopores: computational methods and technological applications</title><title>Advances in physics: X</title><description>Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices.</description><subject>Biological properties</subject><subject>Electric fields</subject><subject>Electrolytes</subject><subject>Electroosmosis</subject><subject>Electroosmotic flow</subject><subject>Fluidics</subject><subject>Mass transport</subject><subject>mesoscale models</subject><subject>molecular dynamics</subject><subject>Nanofluids</subject><subject>nanopore sensing</subject><subject>PNP-NS</subject><subject>Sensors</subject><subject>Transport properties</subject><issn>2374-6149</issn><issn>2374-6149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LxDAQLaLgov4EoeB5NUmTNPGkiF8giKDnkObDzdJ2apJF_PemroonLzPDm_feMLyqOsboFCOBzkjTUo6pPCWIkFIazhuxUy1mfDkvdv_M-9VRSmuEEOZtETeL6um6dyZHgDRACqkOYz3qESaILp3XBoZpk3UOMOq-HlxegU21Hm2dnVmN0MNrMGWjp6kvw8xLh9We131yR9_9oHq5uX6-uls-PN7eX10-LA1lOC-ZbCgznUPOWMEoJ0JIblpCXUdaxwqEfOdx56yR1BaC9NZRUx50hlHBm4PqfutrQa_VFMOg44cCHdQXAPFV6ZiD6Z1CFLfcIslxR6gURkrfGsw40Vx7LmzxOtl6TRHeNi5ltYZNLD8nRVrcskZQLAqLbVkmQkrR-d-rGKk5DPUThprDUN9hFN3FVhdGD3HQ7xB7q7L-6CH6qEcTkmr-t_gE1OCQeg</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Gubbiotti, Alberto</creator><creator>Baldelli, Matteo</creator><creator>Di Muccio, Giovanni</creator><creator>Malgaretti, Paolo</creator><creator>Marbach, Sophie</creator><creator>Chinappi, Mauro</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4509-1247</orcidid><orcidid>https://orcid.org/0000-0002-2427-2065</orcidid><orcidid>https://orcid.org/0000-0001-6152-8800</orcidid><orcidid>https://orcid.org/0000-0002-8190-601X</orcidid></search><sort><creationdate>20221231</creationdate><title>Electroosmosis in nanopores: computational methods and technological applications</title><author>Gubbiotti, Alberto ; Baldelli, Matteo ; Di Muccio, Giovanni ; Malgaretti, Paolo ; Marbach, Sophie ; Chinappi, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological properties</topic><topic>Electric fields</topic><topic>Electrolytes</topic><topic>Electroosmosis</topic><topic>Electroosmotic flow</topic><topic>Fluidics</topic><topic>Mass transport</topic><topic>mesoscale models</topic><topic>molecular dynamics</topic><topic>Nanofluids</topic><topic>nanopore sensing</topic><topic>PNP-NS</topic><topic>Sensors</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gubbiotti, Alberto</creatorcontrib><creatorcontrib>Baldelli, Matteo</creatorcontrib><creatorcontrib>Di Muccio, Giovanni</creatorcontrib><creatorcontrib>Malgaretti, Paolo</creatorcontrib><creatorcontrib>Marbach, Sophie</creatorcontrib><creatorcontrib>Chinappi, Mauro</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in physics: X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gubbiotti, Alberto</au><au>Baldelli, Matteo</au><au>Di Muccio, Giovanni</au><au>Malgaretti, Paolo</au><au>Marbach, Sophie</au><au>Chinappi, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmosis in nanopores: computational methods and technological applications</atitle><jtitle>Advances in physics: X</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>7</volume><issue>1</issue><issn>2374-6149</issn><eissn>2374-6149</eissn><abstract>Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/23746149.2022.2036638</doi><orcidid>https://orcid.org/0000-0002-4509-1247</orcidid><orcidid>https://orcid.org/0000-0002-2427-2065</orcidid><orcidid>https://orcid.org/0000-0001-6152-8800</orcidid><orcidid>https://orcid.org/0000-0002-8190-601X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2374-6149 |
ispartof | Advances in physics: X, 2022-12, Vol.7 (1) |
issn | 2374-6149 2374-6149 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_04176d0961b2498c99f7c1562a6af68d |
source | Taylor & Francis Open Access; Access via ProQuest (Open Access) |
subjects | Biological properties Electric fields Electrolytes Electroosmosis Electroosmotic flow Fluidics Mass transport mesoscale models molecular dynamics Nanofluids nanopore sensing PNP-NS Sensors Transport properties |
title | Electroosmosis in nanopores: computational methods and technological applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmosis%20in%20nanopores:%20computational%20methods%20and%20technological%20applications&rft.jtitle=Advances%20in%20physics:%20X&rft.au=Gubbiotti,%20Alberto&rft.date=2022-12-31&rft.volume=7&rft.issue=1&rft.issn=2374-6149&rft.eissn=2374-6149&rft_id=info:doi/10.1080/23746149.2022.2036638&rft_dat=%3Cproquest_doaj_%3E2717538418%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2717538418&rft_id=info:pmid/&rfr_iscdi=true |