Loading…

Electroosmosis in nanopores: computational methods and technological applications

Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacer...

Full description

Saved in:
Bibliographic Details
Published in:Advances in physics: X 2022-12, Vol.7 (1)
Main Authors: Gubbiotti, Alberto, Baldelli, Matteo, Di Muccio, Giovanni, Malgaretti, Paolo, Marbach, Sophie, Chinappi, Mauro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863
cites cdi_FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863
container_end_page
container_issue 1
container_start_page
container_title Advances in physics: X
container_volume 7
creator Gubbiotti, Alberto
Baldelli, Matteo
Di Muccio, Giovanni
Malgaretti, Paolo
Marbach, Sophie
Chinappi, Mauro
description Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices.
doi_str_mv 10.1080/23746149.2022.2036638
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_04176d0961b2498c99f7c1562a6af68d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_04176d0961b2498c99f7c1562a6af68d</doaj_id><sourcerecordid>2717538418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863</originalsourceid><addsrcrecordid>eNp9UU1LxDAQLaLgov4EoeB5NUmTNPGkiF8giKDnkObDzdJ2apJF_PemroonLzPDm_feMLyqOsboFCOBzkjTUo6pPCWIkFIazhuxUy1mfDkvdv_M-9VRSmuEEOZtETeL6um6dyZHgDRACqkOYz3qESaILp3XBoZpk3UOMOq-HlxegU21Hm2dnVmN0MNrMGWjp6kvw8xLh9We131yR9_9oHq5uX6-uls-PN7eX10-LA1lOC-ZbCgznUPOWMEoJ0JIblpCXUdaxwqEfOdx56yR1BaC9NZRUx50hlHBm4PqfutrQa_VFMOg44cCHdQXAPFV6ZiD6Z1CFLfcIslxR6gURkrfGsw40Vx7LmzxOtl6TRHeNi5ltYZNLD8nRVrcskZQLAqLbVkmQkrR-d-rGKk5DPUThprDUN9hFN3FVhdGD3HQ7xB7q7L-6CH6qEcTkmr-t_gE1OCQeg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717538418</pqid></control><display><type>article</type><title>Electroosmosis in nanopores: computational methods and technological applications</title><source>Taylor &amp; Francis Open Access</source><source>Access via ProQuest (Open Access)</source><creator>Gubbiotti, Alberto ; Baldelli, Matteo ; Di Muccio, Giovanni ; Malgaretti, Paolo ; Marbach, Sophie ; Chinappi, Mauro</creator><creatorcontrib>Gubbiotti, Alberto ; Baldelli, Matteo ; Di Muccio, Giovanni ; Malgaretti, Paolo ; Marbach, Sophie ; Chinappi, Mauro</creatorcontrib><description>Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices.</description><identifier>ISSN: 2374-6149</identifier><identifier>EISSN: 2374-6149</identifier><identifier>DOI: 10.1080/23746149.2022.2036638</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Biological properties ; Electric fields ; Electrolytes ; Electroosmosis ; Electroosmotic flow ; Fluidics ; Mass transport ; mesoscale models ; molecular dynamics ; Nanofluids ; nanopore sensing ; PNP-NS ; Sensors ; Transport properties</subject><ispartof>Advances in physics: X, 2022-12, Vol.7 (1)</ispartof><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2022</rights><rights>2022 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863</citedby><cites>FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863</cites><orcidid>0000-0002-4509-1247 ; 0000-0002-2427-2065 ; 0000-0001-6152-8800 ; 0000-0002-8190-601X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/23746149.2022.2036638$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2717538418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27502,27924,27925,37012,44590,59143,59144</link.rule.ids></links><search><creatorcontrib>Gubbiotti, Alberto</creatorcontrib><creatorcontrib>Baldelli, Matteo</creatorcontrib><creatorcontrib>Di Muccio, Giovanni</creatorcontrib><creatorcontrib>Malgaretti, Paolo</creatorcontrib><creatorcontrib>Marbach, Sophie</creatorcontrib><creatorcontrib>Chinappi, Mauro</creatorcontrib><title>Electroosmosis in nanopores: computational methods and technological applications</title><title>Advances in physics: X</title><description>Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices.</description><subject>Biological properties</subject><subject>Electric fields</subject><subject>Electrolytes</subject><subject>Electroosmosis</subject><subject>Electroosmotic flow</subject><subject>Fluidics</subject><subject>Mass transport</subject><subject>mesoscale models</subject><subject>molecular dynamics</subject><subject>Nanofluids</subject><subject>nanopore sensing</subject><subject>PNP-NS</subject><subject>Sensors</subject><subject>Transport properties</subject><issn>2374-6149</issn><issn>2374-6149</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LxDAQLaLgov4EoeB5NUmTNPGkiF8giKDnkObDzdJ2apJF_PemroonLzPDm_feMLyqOsboFCOBzkjTUo6pPCWIkFIazhuxUy1mfDkvdv_M-9VRSmuEEOZtETeL6um6dyZHgDRACqkOYz3qESaILp3XBoZpk3UOMOq-HlxegU21Hm2dnVmN0MNrMGWjp6kvw8xLh9We131yR9_9oHq5uX6-uls-PN7eX10-LA1lOC-ZbCgznUPOWMEoJ0JIblpCXUdaxwqEfOdx56yR1BaC9NZRUx50hlHBm4PqfutrQa_VFMOg44cCHdQXAPFV6ZiD6Z1CFLfcIslxR6gURkrfGsw40Vx7LmzxOtl6TRHeNi5ltYZNLD8nRVrcskZQLAqLbVkmQkrR-d-rGKk5DPUThprDUN9hFN3FVhdGD3HQ7xB7q7L-6CH6qEcTkmr-t_gE1OCQeg</recordid><startdate>20221231</startdate><enddate>20221231</enddate><creator>Gubbiotti, Alberto</creator><creator>Baldelli, Matteo</creator><creator>Di Muccio, Giovanni</creator><creator>Malgaretti, Paolo</creator><creator>Marbach, Sophie</creator><creator>Chinappi, Mauro</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis Group</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FD</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>L7M</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4509-1247</orcidid><orcidid>https://orcid.org/0000-0002-2427-2065</orcidid><orcidid>https://orcid.org/0000-0001-6152-8800</orcidid><orcidid>https://orcid.org/0000-0002-8190-601X</orcidid></search><sort><creationdate>20221231</creationdate><title>Electroosmosis in nanopores: computational methods and technological applications</title><author>Gubbiotti, Alberto ; Baldelli, Matteo ; Di Muccio, Giovanni ; Malgaretti, Paolo ; Marbach, Sophie ; Chinappi, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological properties</topic><topic>Electric fields</topic><topic>Electrolytes</topic><topic>Electroosmosis</topic><topic>Electroosmotic flow</topic><topic>Fluidics</topic><topic>Mass transport</topic><topic>mesoscale models</topic><topic>molecular dynamics</topic><topic>Nanofluids</topic><topic>nanopore sensing</topic><topic>PNP-NS</topic><topic>Sensors</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gubbiotti, Alberto</creatorcontrib><creatorcontrib>Baldelli, Matteo</creatorcontrib><creatorcontrib>Di Muccio, Giovanni</creatorcontrib><creatorcontrib>Malgaretti, Paolo</creatorcontrib><creatorcontrib>Marbach, Sophie</creatorcontrib><creatorcontrib>Chinappi, Mauro</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in physics: X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gubbiotti, Alberto</au><au>Baldelli, Matteo</au><au>Di Muccio, Giovanni</au><au>Malgaretti, Paolo</au><au>Marbach, Sophie</au><au>Chinappi, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmosis in nanopores: computational methods and technological applications</atitle><jtitle>Advances in physics: X</jtitle><date>2022-12-31</date><risdate>2022</risdate><volume>7</volume><issue>1</issue><issn>2374-6149</issn><eissn>2374-6149</eissn><abstract>Electroosmosis is a fascinating effect where liquid motion is induced by an applied electric field. Counter ions accumulate in the vicinity of charged surfaces, triggering a coupling between liquid mass transport and external electric field. In nanofluidic technologies, where surfaces play an exacerbated role, electroosmosis is thus of primary importance. Its consequences on transport properties in biological and synthetic nanopores are subtle and intricate. Thorough understanding is therefore challenging yet crucial to fully assess the mechanisms at play. Here, we review recent progress on computational techniques for the analysis of electroosmosis and discuss technological applications, in particular for nanopore sensing devices.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/23746149.2022.2036638</doi><orcidid>https://orcid.org/0000-0002-4509-1247</orcidid><orcidid>https://orcid.org/0000-0002-2427-2065</orcidid><orcidid>https://orcid.org/0000-0001-6152-8800</orcidid><orcidid>https://orcid.org/0000-0002-8190-601X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2374-6149
ispartof Advances in physics: X, 2022-12, Vol.7 (1)
issn 2374-6149
2374-6149
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_04176d0961b2498c99f7c1562a6af68d
source Taylor & Francis Open Access; Access via ProQuest (Open Access)
subjects Biological properties
Electric fields
Electrolytes
Electroosmosis
Electroosmotic flow
Fluidics
Mass transport
mesoscale models
molecular dynamics
Nanofluids
nanopore sensing
PNP-NS
Sensors
Transport properties
title Electroosmosis in nanopores: computational methods and technological applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmosis%20in%20nanopores:%20computational%20methods%20and%20technological%20applications&rft.jtitle=Advances%20in%20physics:%20X&rft.au=Gubbiotti,%20Alberto&rft.date=2022-12-31&rft.volume=7&rft.issue=1&rft.issn=2374-6149&rft.eissn=2374-6149&rft_id=info:doi/10.1080/23746149.2022.2036638&rft_dat=%3Cproquest_doaj_%3E2717538418%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-59345cbe0ecd854628896c724eb27e58540fbf1bedc94d5469fde4c203ec54863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2717538418&rft_id=info:pmid/&rfr_iscdi=true