Loading…

The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]

DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle.  Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints.  This "checkpoint privileged" stat...

Full description

Saved in:
Bibliographic Details
Published in:F1000 research 2018, Vol.7, p.1027
Main Authors: Audry, Julien, Wang, Jinyu, Eisenstatt, Jessica R, Berkner, Kathleen L, Runge, Kurt W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33
cites cdi_FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33
container_end_page
container_issue
container_start_page 1027
container_title F1000 research
container_volume 7
creator Audry, Julien
Wang, Jinyu
Eisenstatt, Jessica R
Berkner, Kathleen L
Runge, Kurt W
description DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle.  Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints.  This "checkpoint privileged" status of telomeres was previously investigated in the yeast  Schizosaccharomyces pombelacking the major double-stranded telomere DNA binding protein Taz1. Telomeric DNA repeats in cells lacking Taz1 are 10 times longer than normal and contain single-stranded DNA regions. DNA damage checkpoint proteins associate with these damaged telomeres, but the DNA damage checkpoint is not activated. This severing of the DNA damage checkpoint signaling pathway was reported to stem from exclusion of histone H4 lysine 20 dimethylation (H4K20me2) from telomeric nucleosomes in both wild type cells and cells lacking Taz1.  However, experiments to identify the mechanism of this exclusion failed, prompting our re-evaluation of H4K20me2 levels at telomeric chromatin.  In this short report, we used an extensive series of controls to identify an antibody specific for the H4K20me2 modification and show that the level of this modification is the same at telomeres and internal loci in both wild type cells and those lacking Taz1.  Consequently, telomeres must block activation of the DNA Damage Response by another mechanism that remains to be determined.
doi_str_mv 10.12688/f1000research.15166.2
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0417e68b9cb641f0aeec88c8ad315a2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0417e68b9cb641f0aeec88c8ad315a2a</doaj_id><sourcerecordid>2140043448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33</originalsourceid><addsrcrecordid>eNp9kttuEzEQhlcIRKvSV6gscQMSCT6t4xQJCVVAKipxU64QsnwYdx0268W7Wdg34_Ewm6Q0N9zYY3v-b8aavyguCJ4TKqR87QnGOEEHOtlqTkoixJw-Kk4p5mJGOKaPH8QnxXnXrbMAL5dM0MXT4oRhvpSlkKfF79sKUGiqYEIfYoOiR7YC-72NoemRtn0Y9PRgRtRDHTeQyyIX89LEPiuHWA-A4Jett90e4MIG-mqs9YFYha6PDaAVR_XYhRxRjF6s-CeKN0Bfoq8DpElM36AWIKEEQ4Cfl4gi3bYpDuBeITIVPJy_PSueeF13cL7fz4ovH97fXq1mN58_Xl-9u5lZzgmdSU21M05jRxkj2gOzjAiDufSGG146Jyx2HiiDkvtSOMGsXWDPjTcWHGNnxfWO66JeqzaFjU6jijqo6SKmO6VTH2wNCnOyACHN0hrBiccawEpppXaMlLmPzHq7Y7VbswFnoemTro-gxy9NqNRdHJSgPE9zkQHP94AUf2yh69U6blOT_69oHjXmjHOZs8Quy6bYdQn8fQWC1WQgdWQgNRlI0Sy8eNjfvexgl5xwuUvw2m7rfvxLUf8w_6f_AX-32iU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140043448</pqid></control><display><type>article</type><title>The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Audry, Julien ; Wang, Jinyu ; Eisenstatt, Jessica R ; Berkner, Kathleen L ; Runge, Kurt W</creator><creatorcontrib>Audry, Julien ; Wang, Jinyu ; Eisenstatt, Jessica R ; Berkner, Kathleen L ; Runge, Kurt W</creatorcontrib><description>DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle.  Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints.  This "checkpoint privileged" status of telomeres was previously investigated in the yeast  Schizosaccharomyces pombelacking the major double-stranded telomere DNA binding protein Taz1. Telomeric DNA repeats in cells lacking Taz1 are 10 times longer than normal and contain single-stranded DNA regions. DNA damage checkpoint proteins associate with these damaged telomeres, but the DNA damage checkpoint is not activated. This severing of the DNA damage checkpoint signaling pathway was reported to stem from exclusion of histone H4 lysine 20 dimethylation (H4K20me2) from telomeric nucleosomes in both wild type cells and cells lacking Taz1.  However, experiments to identify the mechanism of this exclusion failed, prompting our re-evaluation of H4K20me2 levels at telomeric chromatin.  In this short report, we used an extensive series of controls to identify an antibody specific for the H4K20me2 modification and show that the level of this modification is the same at telomeres and internal loci in both wild type cells and those lacking Taz1.  Consequently, telomeres must block activation of the DNA Damage Response by another mechanism that remains to be determined.</description><identifier>ISSN: 2046-1402</identifier><identifier>EISSN: 2046-1402</identifier><identifier>DOI: 10.12688/f1000research.15166.2</identifier><identifier>PMID: 30498568</identifier><language>eng</language><publisher>England: Faculty of 1000 Ltd</publisher><subject>Cell cycle ; Cell Cycle Checkpoints ; Chromatin ; Chromosomes ; Cloning ; Copyright ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA methylation ; Enzymes ; Genes ; Genomes ; Histone H4 ; Histones - genetics ; Histones - metabolism ; Lysine ; Medicine ; Methylation ; Nucleosomes ; Proteins ; Research Note ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Schizosaccharomyces - genetics ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism ; Signal transduction ; Single-stranded DNA ; Telomerase ; Telomere - genetics ; Telomere - metabolism ; Telomeres ; Yeast</subject><ispartof>F1000 research, 2018, Vol.7, p.1027</ispartof><rights>Copyright: © 2018 Audry J et al.</rights><rights>Copyright: © 2018 Audry J et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2018 Audry J et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33</citedby><cites>FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33</cites><orcidid>0000-0001-8492-0530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2140043448/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2140043448?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,25734,27904,27905,27906,36993,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30498568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Audry, Julien</creatorcontrib><creatorcontrib>Wang, Jinyu</creatorcontrib><creatorcontrib>Eisenstatt, Jessica R</creatorcontrib><creatorcontrib>Berkner, Kathleen L</creatorcontrib><creatorcontrib>Runge, Kurt W</creatorcontrib><title>The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]</title><title>F1000 research</title><addtitle>F1000Res</addtitle><description>DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle.  Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints.  This "checkpoint privileged" status of telomeres was previously investigated in the yeast  Schizosaccharomyces pombelacking the major double-stranded telomere DNA binding protein Taz1. Telomeric DNA repeats in cells lacking Taz1 are 10 times longer than normal and contain single-stranded DNA regions. DNA damage checkpoint proteins associate with these damaged telomeres, but the DNA damage checkpoint is not activated. This severing of the DNA damage checkpoint signaling pathway was reported to stem from exclusion of histone H4 lysine 20 dimethylation (H4K20me2) from telomeric nucleosomes in both wild type cells and cells lacking Taz1.  However, experiments to identify the mechanism of this exclusion failed, prompting our re-evaluation of H4K20me2 levels at telomeric chromatin.  In this short report, we used an extensive series of controls to identify an antibody specific for the H4K20me2 modification and show that the level of this modification is the same at telomeres and internal loci in both wild type cells and those lacking Taz1.  Consequently, telomeres must block activation of the DNA Damage Response by another mechanism that remains to be determined.</description><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Cloning</subject><subject>Copyright</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA methylation</subject><subject>Enzymes</subject><subject>Genes</subject><subject>Genomes</subject><subject>Histone H4</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Lysine</subject><subject>Medicine</subject><subject>Methylation</subject><subject>Nucleosomes</subject><subject>Proteins</subject><subject>Research Note</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Single-stranded DNA</subject><subject>Telomerase</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomeres</subject><subject>Yeast</subject><issn>2046-1402</issn><issn>2046-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kttuEzEQhlcIRKvSV6gscQMSCT6t4xQJCVVAKipxU64QsnwYdx0268W7Wdg34_Ewm6Q0N9zYY3v-b8aavyguCJ4TKqR87QnGOEEHOtlqTkoixJw-Kk4p5mJGOKaPH8QnxXnXrbMAL5dM0MXT4oRhvpSlkKfF79sKUGiqYEIfYoOiR7YC-72NoemRtn0Y9PRgRtRDHTeQyyIX89LEPiuHWA-A4Jett90e4MIG-mqs9YFYha6PDaAVR_XYhRxRjF6s-CeKN0Bfoq8DpElM36AWIKEEQ4Cfl4gi3bYpDuBeITIVPJy_PSueeF13cL7fz4ovH97fXq1mN58_Xl-9u5lZzgmdSU21M05jRxkj2gOzjAiDufSGG146Jyx2HiiDkvtSOMGsXWDPjTcWHGNnxfWO66JeqzaFjU6jijqo6SKmO6VTH2wNCnOyACHN0hrBiccawEpppXaMlLmPzHq7Y7VbswFnoemTro-gxy9NqNRdHJSgPE9zkQHP94AUf2yh69U6blOT_69oHjXmjHOZs8Quy6bYdQn8fQWC1WQgdWQgNRlI0Sy8eNjfvexgl5xwuUvw2m7rfvxLUf8w_6f_AX-32iU</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Audry, Julien</creator><creator>Wang, Jinyu</creator><creator>Eisenstatt, Jessica R</creator><creator>Berkner, Kathleen L</creator><creator>Runge, Kurt W</creator><general>Faculty of 1000 Ltd</general><general>F1000 Research Limited</general><general>F1000 Research Ltd</general><scope>C-E</scope><scope>CH4</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8492-0530</orcidid></search><sort><creationdate>2018</creationdate><title>The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]</title><author>Audry, Julien ; Wang, Jinyu ; Eisenstatt, Jessica R ; Berkner, Kathleen L ; Runge, Kurt W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Cloning</topic><topic>Copyright</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA methylation</topic><topic>Enzymes</topic><topic>Genes</topic><topic>Genomes</topic><topic>Histone H4</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Lysine</topic><topic>Medicine</topic><topic>Methylation</topic><topic>Nucleosomes</topic><topic>Proteins</topic><topic>Research Note</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Single-stranded DNA</topic><topic>Telomerase</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomeres</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Audry, Julien</creatorcontrib><creatorcontrib>Wang, Jinyu</creatorcontrib><creatorcontrib>Eisenstatt, Jessica R</creatorcontrib><creatorcontrib>Berkner, Kathleen L</creatorcontrib><creatorcontrib>Runge, Kurt W</creatorcontrib><collection>F1000Research</collection><collection>Faculty of 1000</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>F1000 research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Audry, Julien</au><au>Wang, Jinyu</au><au>Eisenstatt, Jessica R</au><au>Berkner, Kathleen L</au><au>Runge, Kurt W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]</atitle><jtitle>F1000 research</jtitle><addtitle>F1000Res</addtitle><date>2018</date><risdate>2018</risdate><volume>7</volume><spage>1027</spage><pages>1027-</pages><issn>2046-1402</issn><eissn>2046-1402</eissn><abstract>DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle.  Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints.  This "checkpoint privileged" status of telomeres was previously investigated in the yeast  Schizosaccharomyces pombelacking the major double-stranded telomere DNA binding protein Taz1. Telomeric DNA repeats in cells lacking Taz1 are 10 times longer than normal and contain single-stranded DNA regions. DNA damage checkpoint proteins associate with these damaged telomeres, but the DNA damage checkpoint is not activated. This severing of the DNA damage checkpoint signaling pathway was reported to stem from exclusion of histone H4 lysine 20 dimethylation (H4K20me2) from telomeric nucleosomes in both wild type cells and cells lacking Taz1.  However, experiments to identify the mechanism of this exclusion failed, prompting our re-evaluation of H4K20me2 levels at telomeric chromatin.  In this short report, we used an extensive series of controls to identify an antibody specific for the H4K20me2 modification and show that the level of this modification is the same at telomeres and internal loci in both wild type cells and those lacking Taz1.  Consequently, telomeres must block activation of the DNA Damage Response by another mechanism that remains to be determined.</abstract><cop>England</cop><pub>Faculty of 1000 Ltd</pub><pmid>30498568</pmid><doi>10.12688/f1000research.15166.2</doi><orcidid>https://orcid.org/0000-0001-8492-0530</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-1402
ispartof F1000 research, 2018, Vol.7, p.1027
issn 2046-1402
2046-1402
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_0417e68b9cb641f0aeec88c8ad315a2a
source Publicly Available Content Database; PubMed Central
subjects Cell cycle
Cell Cycle Checkpoints
Chromatin
Chromosomes
Cloning
Copyright
Datasets
Deoxyribonucleic acid
DNA
DNA Damage
DNA methylation
Enzymes
Genes
Genomes
Histone H4
Histones - genetics
Histones - metabolism
Lysine
Medicine
Methylation
Nucleosomes
Proteins
Research Note
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Schizosaccharomyces - genetics
Schizosaccharomyces - metabolism
Schizosaccharomyces pombe Proteins - genetics
Schizosaccharomyces pombe Proteins - metabolism
Signal transduction
Single-stranded DNA
Telomerase
Telomere - genetics
Telomere - metabolism
Telomeres
Yeast
title The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20inhibition%20of%20checkpoint%20activation%20by%20telomeres%20does%20not%20involve%20exclusion%20of%20dimethylation%20of%20histone%20H4%20lysine%2020%20(H4K20me2)%20%5Bversion%202;%20peer%20review:%202%20approved,%201%20not%20approved%5D&rft.jtitle=F1000%20research&rft.au=Audry,%20Julien&rft.date=2018&rft.volume=7&rft.spage=1027&rft.pages=1027-&rft.issn=2046-1402&rft.eissn=2046-1402&rft_id=info:doi/10.12688/f1000research.15166.2&rft_dat=%3Cproquest_doaj_%3E2140043448%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2140043448&rft_id=info:pmid/30498568&rfr_iscdi=true