Loading…
The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]
DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle. Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints. This "checkpoint privileged" stat...
Saved in:
Published in: | F1000 research 2018, Vol.7, p.1027 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33 |
container_end_page | |
container_issue | |
container_start_page | 1027 |
container_title | F1000 research |
container_volume | 7 |
creator | Audry, Julien Wang, Jinyu Eisenstatt, Jessica R Berkner, Kathleen L Runge, Kurt W |
description | DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle. Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints. This "checkpoint privileged" status of telomeres was previously investigated in the yeast
Schizosaccharomyces pombelacking the major double-stranded telomere DNA binding protein Taz1. Telomeric DNA repeats in cells lacking Taz1 are 10 times longer than normal and contain single-stranded DNA regions. DNA damage checkpoint proteins associate with these damaged telomeres, but the DNA damage checkpoint is not activated. This severing of the DNA damage checkpoint signaling pathway was reported to stem from exclusion of histone H4 lysine 20 dimethylation (H4K20me2) from telomeric nucleosomes in both wild type cells and cells lacking Taz1. However, experiments to identify the mechanism of this exclusion failed, prompting our re-evaluation of H4K20me2 levels at telomeric chromatin. In this short report, we used an extensive series of controls to identify an antibody specific for the H4K20me2 modification and show that the level of this modification is the same at telomeres and internal loci in both wild type cells and those lacking Taz1. Consequently, telomeres must block activation of the DNA Damage Response by another mechanism that remains to be determined. |
doi_str_mv | 10.12688/f1000research.15166.2 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_0417e68b9cb641f0aeec88c8ad315a2a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0417e68b9cb641f0aeec88c8ad315a2a</doaj_id><sourcerecordid>2140043448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33</originalsourceid><addsrcrecordid>eNp9kttuEzEQhlcIRKvSV6gscQMSCT6t4xQJCVVAKipxU64QsnwYdx0268W7Wdg34_Ewm6Q0N9zYY3v-b8aavyguCJ4TKqR87QnGOEEHOtlqTkoixJw-Kk4p5mJGOKaPH8QnxXnXrbMAL5dM0MXT4oRhvpSlkKfF79sKUGiqYEIfYoOiR7YC-72NoemRtn0Y9PRgRtRDHTeQyyIX89LEPiuHWA-A4Jett90e4MIG-mqs9YFYha6PDaAVR_XYhRxRjF6s-CeKN0Bfoq8DpElM36AWIKEEQ4Cfl4gi3bYpDuBeITIVPJy_PSueeF13cL7fz4ovH97fXq1mN58_Xl-9u5lZzgmdSU21M05jRxkj2gOzjAiDufSGG146Jyx2HiiDkvtSOMGsXWDPjTcWHGNnxfWO66JeqzaFjU6jijqo6SKmO6VTH2wNCnOyACHN0hrBiccawEpppXaMlLmPzHq7Y7VbswFnoemTro-gxy9NqNRdHJSgPE9zkQHP94AUf2yh69U6blOT_69oHjXmjHOZs8Quy6bYdQn8fQWC1WQgdWQgNRlI0Sy8eNjfvexgl5xwuUvw2m7rfvxLUf8w_6f_AX-32iU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2140043448</pqid></control><display><type>article</type><title>The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Audry, Julien ; Wang, Jinyu ; Eisenstatt, Jessica R ; Berkner, Kathleen L ; Runge, Kurt W</creator><creatorcontrib>Audry, Julien ; Wang, Jinyu ; Eisenstatt, Jessica R ; Berkner, Kathleen L ; Runge, Kurt W</creatorcontrib><description>DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle. Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints. This "checkpoint privileged" status of telomeres was previously investigated in the yeast
Schizosaccharomyces pombelacking the major double-stranded telomere DNA binding protein Taz1. Telomeric DNA repeats in cells lacking Taz1 are 10 times longer than normal and contain single-stranded DNA regions. DNA damage checkpoint proteins associate with these damaged telomeres, but the DNA damage checkpoint is not activated. This severing of the DNA damage checkpoint signaling pathway was reported to stem from exclusion of histone H4 lysine 20 dimethylation (H4K20me2) from telomeric nucleosomes in both wild type cells and cells lacking Taz1. However, experiments to identify the mechanism of this exclusion failed, prompting our re-evaluation of H4K20me2 levels at telomeric chromatin. In this short report, we used an extensive series of controls to identify an antibody specific for the H4K20me2 modification and show that the level of this modification is the same at telomeres and internal loci in both wild type cells and those lacking Taz1. Consequently, telomeres must block activation of the DNA Damage Response by another mechanism that remains to be determined.</description><identifier>ISSN: 2046-1402</identifier><identifier>EISSN: 2046-1402</identifier><identifier>DOI: 10.12688/f1000research.15166.2</identifier><identifier>PMID: 30498568</identifier><language>eng</language><publisher>England: Faculty of 1000 Ltd</publisher><subject>Cell cycle ; Cell Cycle Checkpoints ; Chromatin ; Chromosomes ; Cloning ; Copyright ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA methylation ; Enzymes ; Genes ; Genomes ; Histone H4 ; Histones - genetics ; Histones - metabolism ; Lysine ; Medicine ; Methylation ; Nucleosomes ; Proteins ; Research Note ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Schizosaccharomyces - genetics ; Schizosaccharomyces - metabolism ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism ; Signal transduction ; Single-stranded DNA ; Telomerase ; Telomere - genetics ; Telomere - metabolism ; Telomeres ; Yeast</subject><ispartof>F1000 research, 2018, Vol.7, p.1027</ispartof><rights>Copyright: © 2018 Audry J et al.</rights><rights>Copyright: © 2018 Audry J et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright: © 2018 Audry J et al. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33</citedby><cites>FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33</cites><orcidid>0000-0001-8492-0530</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2140043448/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2140043448?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,25734,27904,27905,27906,36993,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30498568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Audry, Julien</creatorcontrib><creatorcontrib>Wang, Jinyu</creatorcontrib><creatorcontrib>Eisenstatt, Jessica R</creatorcontrib><creatorcontrib>Berkner, Kathleen L</creatorcontrib><creatorcontrib>Runge, Kurt W</creatorcontrib><title>The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]</title><title>F1000 research</title><addtitle>F1000Res</addtitle><description>DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle. Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints. This "checkpoint privileged" status of telomeres was previously investigated in the yeast
Schizosaccharomyces pombelacking the major double-stranded telomere DNA binding protein Taz1. Telomeric DNA repeats in cells lacking Taz1 are 10 times longer than normal and contain single-stranded DNA regions. DNA damage checkpoint proteins associate with these damaged telomeres, but the DNA damage checkpoint is not activated. This severing of the DNA damage checkpoint signaling pathway was reported to stem from exclusion of histone H4 lysine 20 dimethylation (H4K20me2) from telomeric nucleosomes in both wild type cells and cells lacking Taz1. However, experiments to identify the mechanism of this exclusion failed, prompting our re-evaluation of H4K20me2 levels at telomeric chromatin. In this short report, we used an extensive series of controls to identify an antibody specific for the H4K20me2 modification and show that the level of this modification is the same at telomeres and internal loci in both wild type cells and those lacking Taz1. Consequently, telomeres must block activation of the DNA Damage Response by another mechanism that remains to be determined.</description><subject>Cell cycle</subject><subject>Cell Cycle Checkpoints</subject><subject>Chromatin</subject><subject>Chromosomes</subject><subject>Cloning</subject><subject>Copyright</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA methylation</subject><subject>Enzymes</subject><subject>Genes</subject><subject>Genomes</subject><subject>Histone H4</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Lysine</subject><subject>Medicine</subject><subject>Methylation</subject><subject>Nucleosomes</subject><subject>Proteins</subject><subject>Research Note</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces - metabolism</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Single-stranded DNA</subject><subject>Telomerase</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>Telomeres</subject><subject>Yeast</subject><issn>2046-1402</issn><issn>2046-1402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kttuEzEQhlcIRKvSV6gscQMSCT6t4xQJCVVAKipxU64QsnwYdx0268W7Wdg34_Ewm6Q0N9zYY3v-b8aavyguCJ4TKqR87QnGOEEHOtlqTkoixJw-Kk4p5mJGOKaPH8QnxXnXrbMAL5dM0MXT4oRhvpSlkKfF79sKUGiqYEIfYoOiR7YC-72NoemRtn0Y9PRgRtRDHTeQyyIX89LEPiuHWA-A4Jett90e4MIG-mqs9YFYha6PDaAVR_XYhRxRjF6s-CeKN0Bfoq8DpElM36AWIKEEQ4Cfl4gi3bYpDuBeITIVPJy_PSueeF13cL7fz4ovH97fXq1mN58_Xl-9u5lZzgmdSU21M05jRxkj2gOzjAiDufSGG146Jyx2HiiDkvtSOMGsXWDPjTcWHGNnxfWO66JeqzaFjU6jijqo6SKmO6VTH2wNCnOyACHN0hrBiccawEpppXaMlLmPzHq7Y7VbswFnoemTro-gxy9NqNRdHJSgPE9zkQHP94AUf2yh69U6blOT_69oHjXmjHOZs8Quy6bYdQn8fQWC1WQgdWQgNRlI0Sy8eNjfvexgl5xwuUvw2m7rfvxLUf8w_6f_AX-32iU</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Audry, Julien</creator><creator>Wang, Jinyu</creator><creator>Eisenstatt, Jessica R</creator><creator>Berkner, Kathleen L</creator><creator>Runge, Kurt W</creator><general>Faculty of 1000 Ltd</general><general>F1000 Research Limited</general><general>F1000 Research Ltd</general><scope>C-E</scope><scope>CH4</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8492-0530</orcidid></search><sort><creationdate>2018</creationdate><title>The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]</title><author>Audry, Julien ; Wang, Jinyu ; Eisenstatt, Jessica R ; Berkner, Kathleen L ; Runge, Kurt W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cell cycle</topic><topic>Cell Cycle Checkpoints</topic><topic>Chromatin</topic><topic>Chromosomes</topic><topic>Cloning</topic><topic>Copyright</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA methylation</topic><topic>Enzymes</topic><topic>Genes</topic><topic>Genomes</topic><topic>Histone H4</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Lysine</topic><topic>Medicine</topic><topic>Methylation</topic><topic>Nucleosomes</topic><topic>Proteins</topic><topic>Research Note</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces - metabolism</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Single-stranded DNA</topic><topic>Telomerase</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>Telomeres</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Audry, Julien</creatorcontrib><creatorcontrib>Wang, Jinyu</creatorcontrib><creatorcontrib>Eisenstatt, Jessica R</creatorcontrib><creatorcontrib>Berkner, Kathleen L</creatorcontrib><creatorcontrib>Runge, Kurt W</creatorcontrib><collection>F1000Research</collection><collection>Faculty of 1000</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>F1000 research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Audry, Julien</au><au>Wang, Jinyu</au><au>Eisenstatt, Jessica R</au><au>Berkner, Kathleen L</au><au>Runge, Kurt W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved]</atitle><jtitle>F1000 research</jtitle><addtitle>F1000Res</addtitle><date>2018</date><risdate>2018</risdate><volume>7</volume><spage>1027</spage><pages>1027-</pages><issn>2046-1402</issn><eissn>2046-1402</eissn><abstract>DNA double-strand breaks (DSBs) activate the DNA damage checkpoint machinery to pause or halt the cell cycle. Telomeres, the specific DNA-protein complexes at linear eukaryotic chromosome ends, are capped DSBs that do not activate DNA damage checkpoints. This "checkpoint privileged" status of telomeres was previously investigated in the yeast
Schizosaccharomyces pombelacking the major double-stranded telomere DNA binding protein Taz1. Telomeric DNA repeats in cells lacking Taz1 are 10 times longer than normal and contain single-stranded DNA regions. DNA damage checkpoint proteins associate with these damaged telomeres, but the DNA damage checkpoint is not activated. This severing of the DNA damage checkpoint signaling pathway was reported to stem from exclusion of histone H4 lysine 20 dimethylation (H4K20me2) from telomeric nucleosomes in both wild type cells and cells lacking Taz1. However, experiments to identify the mechanism of this exclusion failed, prompting our re-evaluation of H4K20me2 levels at telomeric chromatin. In this short report, we used an extensive series of controls to identify an antibody specific for the H4K20me2 modification and show that the level of this modification is the same at telomeres and internal loci in both wild type cells and those lacking Taz1. Consequently, telomeres must block activation of the DNA Damage Response by another mechanism that remains to be determined.</abstract><cop>England</cop><pub>Faculty of 1000 Ltd</pub><pmid>30498568</pmid><doi>10.12688/f1000research.15166.2</doi><orcidid>https://orcid.org/0000-0001-8492-0530</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2046-1402 |
ispartof | F1000 research, 2018, Vol.7, p.1027 |
issn | 2046-1402 2046-1402 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_0417e68b9cb641f0aeec88c8ad315a2a |
source | Publicly Available Content Database; PubMed Central |
subjects | Cell cycle Cell Cycle Checkpoints Chromatin Chromosomes Cloning Copyright Datasets Deoxyribonucleic acid DNA DNA Damage DNA methylation Enzymes Genes Genomes Histone H4 Histones - genetics Histones - metabolism Lysine Medicine Methylation Nucleosomes Proteins Research Note Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Schizosaccharomyces - genetics Schizosaccharomyces - metabolism Schizosaccharomyces pombe Proteins - genetics Schizosaccharomyces pombe Proteins - metabolism Signal transduction Single-stranded DNA Telomerase Telomere - genetics Telomere - metabolism Telomeres Yeast |
title | The inhibition of checkpoint activation by telomeres does not involve exclusion of dimethylation of histone H4 lysine 20 (H4K20me2) [version 2; peer review: 2 approved, 1 not approved] |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20inhibition%20of%20checkpoint%20activation%20by%20telomeres%20does%20not%20involve%20exclusion%20of%20dimethylation%20of%20histone%20H4%20lysine%2020%20(H4K20me2)%20%5Bversion%202;%20peer%20review:%202%20approved,%201%20not%20approved%5D&rft.jtitle=F1000%20research&rft.au=Audry,%20Julien&rft.date=2018&rft.volume=7&rft.spage=1027&rft.pages=1027-&rft.issn=2046-1402&rft.eissn=2046-1402&rft_id=info:doi/10.12688/f1000research.15166.2&rft_dat=%3Cproquest_doaj_%3E2140043448%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4412-8a2adbda0d2331afe3c316b048fb4b45dd6c0dfe23e54f56d63cc70f4bfbced33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2140043448&rft_id=info:pmid/30498568&rfr_iscdi=true |