Loading…

Microfluidic measurement of the dissolution rate of gypsum in water using the reactive infiltration-instability

We present an original method for measuring the intrinsic dissolution rate of gypsum. We use a simple microfluidic setup, with a gypsum block inserted between two polycarbonate plates, which is dissolved by water. By changing the flow rate and the distance between the plates, we can scan a wide rang...

Full description

Saved in:
Bibliographic Details
Published in:E3S web of conferences 2019-01, Vol.98, p.4010
Main Authors: Osselin, Florian, Kondratiuk, Pawel, Cybulski, Olgierd, Garstecki, Piotr, Szymczak, Piotr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-10f42c81b5d40ab8bc024c40958305b8fdb6edf73fe68cefb0f9ea2a85d7da093
cites cdi_FETCH-LOGICAL-c423t-10f42c81b5d40ab8bc024c40958305b8fdb6edf73fe68cefb0f9ea2a85d7da093
container_end_page
container_issue
container_start_page 4010
container_title E3S web of conferences
container_volume 98
creator Osselin, Florian
Kondratiuk, Pawel
Cybulski, Olgierd
Garstecki, Piotr
Szymczak, Piotr
description We present an original method for measuring the intrinsic dissolution rate of gypsum. We use a simple microfluidic setup, with a gypsum block inserted between two polycarbonate plates, which is dissolved by water. By changing the flow rate and the distance between the plates, we can scan a wide range of Péclet and Damköhler numbers, characterizing the relative magnitude of advection, diffusion and reaction in the system. We find the dissolution to be unstable, with a formation of a characteristic fingering pattern. The dissolution rate can then be calculated from the initial wavelength of this pattern. Alternatively, it can also be estimated from the time it takes for the gypsum chip to get completely dissolved near the inlet channel. The method presented here is general and can be used to assess the dissolution rates of other minerals.
doi_str_mv 10.1051/e3sconf/20199804010
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_041a771be1a54a76848380ef32f8620b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_041a771be1a54a76848380ef32f8620b</doaj_id><sourcerecordid>2301900643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-10f42c81b5d40ab8bc024c40958305b8fdb6edf73fe68cefb0f9ea2a85d7da093</originalsourceid><addsrcrecordid>eNpVkU1r3DAQhk1IISHJL-jF0FvByejDtnwMoe0GtuSSnMVIHm20eK2tJKfsv6-SDSE9Sbx65oHRW1VfGVwzaNkNiWTD7G44sGFQIIHBSXXOedc3jEt--ul-Vl2ltAUAxlslQZ5X4be3Mbhp8aO39Y4wLZF2NOc6uDo_Uz36lMK0ZB_mOmKm13xz2KdlV_u5_luSWC_Jz5s3OhLa7F-ovDk_5TJQ5ho_p4zGTz4fLqsvDqdEV-_nRfX088fj3apZP_y6v7tdN1ZykRsGTnKrmGlHCWiUscCllTC0SkBrlBtNR6PrhaNOWXIG3EDIUbVjPyIM4qK6P3rHgFu9j36H8aADev0WhLjRGLO3E2mQDPueGWLYSuw7JZVQQE5wpzoOpri-H13POP2nWt2uddlt0cD5IEHwF1bgb0d4H8OfhVLW27DEueyquSgNAXRSFEocqfL5KUVyH14G-rVV_d6q_tSq-AeuZJfA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301900643</pqid></control><display><type>article</type><title>Microfluidic measurement of the dissolution rate of gypsum in water using the reactive infiltration-instability</title><source>Publicly Available Content (ProQuest)</source><creator>Osselin, Florian ; Kondratiuk, Pawel ; Cybulski, Olgierd ; Garstecki, Piotr ; Szymczak, Piotr</creator><contributor>Shouakar-Stash, O. ; Chudaev, O. ; Kharaka, Y. ; Millot, R. ; Harmon, R.</contributor><creatorcontrib>Osselin, Florian ; Kondratiuk, Pawel ; Cybulski, Olgierd ; Garstecki, Piotr ; Szymczak, Piotr ; Shouakar-Stash, O. ; Chudaev, O. ; Kharaka, Y. ; Millot, R. ; Harmon, R.</creatorcontrib><description>We present an original method for measuring the intrinsic dissolution rate of gypsum. We use a simple microfluidic setup, with a gypsum block inserted between two polycarbonate plates, which is dissolved by water. By changing the flow rate and the distance between the plates, we can scan a wide range of Péclet and Damköhler numbers, characterizing the relative magnitude of advection, diffusion and reaction in the system. We find the dissolution to be unstable, with a formation of a characteristic fingering pattern. The dissolution rate can then be calculated from the initial wavelength of this pattern. Alternatively, it can also be estimated from the time it takes for the gypsum chip to get completely dissolved near the inlet channel. The method presented here is general and can be used to assess the dissolution rates of other minerals.</description><identifier>ISSN: 2267-1242</identifier><identifier>ISSN: 2555-0403</identifier><identifier>EISSN: 2267-1242</identifier><identifier>DOI: 10.1051/e3sconf/20199804010</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Dissolution ; Flow rates ; Flow velocity ; Gypsum ; Microfluidics ; Minerals ; Plates ; Polycarbonate ; Sciences of the Universe</subject><ispartof>E3S web of conferences, 2019-01, Vol.98, p.4010</ispartof><rights>2019. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-10f42c81b5d40ab8bc024c40958305b8fdb6edf73fe68cefb0f9ea2a85d7da093</citedby><cites>FETCH-LOGICAL-c423t-10f42c81b5d40ab8bc024c40958305b8fdb6edf73fe68cefb0f9ea2a85d7da093</cites><orcidid>0000-0003-1991-7153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2301900643?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,23929,23930,25139,25752,27923,27924,37011,44589</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-02294032$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Shouakar-Stash, O.</contributor><contributor>Chudaev, O.</contributor><contributor>Kharaka, Y.</contributor><contributor>Millot, R.</contributor><contributor>Harmon, R.</contributor><creatorcontrib>Osselin, Florian</creatorcontrib><creatorcontrib>Kondratiuk, Pawel</creatorcontrib><creatorcontrib>Cybulski, Olgierd</creatorcontrib><creatorcontrib>Garstecki, Piotr</creatorcontrib><creatorcontrib>Szymczak, Piotr</creatorcontrib><title>Microfluidic measurement of the dissolution rate of gypsum in water using the reactive infiltration-instability</title><title>E3S web of conferences</title><description>We present an original method for measuring the intrinsic dissolution rate of gypsum. We use a simple microfluidic setup, with a gypsum block inserted between two polycarbonate plates, which is dissolved by water. By changing the flow rate and the distance between the plates, we can scan a wide range of Péclet and Damköhler numbers, characterizing the relative magnitude of advection, diffusion and reaction in the system. We find the dissolution to be unstable, with a formation of a characteristic fingering pattern. The dissolution rate can then be calculated from the initial wavelength of this pattern. Alternatively, it can also be estimated from the time it takes for the gypsum chip to get completely dissolved near the inlet channel. The method presented here is general and can be used to assess the dissolution rates of other minerals.</description><subject>Dissolution</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Gypsum</subject><subject>Microfluidics</subject><subject>Minerals</subject><subject>Plates</subject><subject>Polycarbonate</subject><subject>Sciences of the Universe</subject><issn>2267-1242</issn><issn>2555-0403</issn><issn>2267-1242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1r3DAQhk1IISHJL-jF0FvByejDtnwMoe0GtuSSnMVIHm20eK2tJKfsv6-SDSE9Sbx65oHRW1VfGVwzaNkNiWTD7G44sGFQIIHBSXXOedc3jEt--ul-Vl2ltAUAxlslQZ5X4be3Mbhp8aO39Y4wLZF2NOc6uDo_Uz36lMK0ZB_mOmKm13xz2KdlV_u5_luSWC_Jz5s3OhLa7F-ovDk_5TJQ5ho_p4zGTz4fLqsvDqdEV-_nRfX088fj3apZP_y6v7tdN1ZykRsGTnKrmGlHCWiUscCllTC0SkBrlBtNR6PrhaNOWXIG3EDIUbVjPyIM4qK6P3rHgFu9j36H8aADev0WhLjRGLO3E2mQDPueGWLYSuw7JZVQQE5wpzoOpri-H13POP2nWt2uddlt0cD5IEHwF1bgb0d4H8OfhVLW27DEueyquSgNAXRSFEocqfL5KUVyH14G-rVV_d6q_tSq-AeuZJfA</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Osselin, Florian</creator><creator>Kondratiuk, Pawel</creator><creator>Cybulski, Olgierd</creator><creator>Garstecki, Piotr</creator><creator>Szymczak, Piotr</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1991-7153</orcidid></search><sort><creationdate>20190101</creationdate><title>Microfluidic measurement of the dissolution rate of gypsum in water using the reactive infiltration-instability</title><author>Osselin, Florian ; Kondratiuk, Pawel ; Cybulski, Olgierd ; Garstecki, Piotr ; Szymczak, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-10f42c81b5d40ab8bc024c40958305b8fdb6edf73fe68cefb0f9ea2a85d7da093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dissolution</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Gypsum</topic><topic>Microfluidics</topic><topic>Minerals</topic><topic>Plates</topic><topic>Polycarbonate</topic><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osselin, Florian</creatorcontrib><creatorcontrib>Kondratiuk, Pawel</creatorcontrib><creatorcontrib>Cybulski, Olgierd</creatorcontrib><creatorcontrib>Garstecki, Piotr</creatorcontrib><creatorcontrib>Szymczak, Piotr</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>E3S web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osselin, Florian</au><au>Kondratiuk, Pawel</au><au>Cybulski, Olgierd</au><au>Garstecki, Piotr</au><au>Szymczak, Piotr</au><au>Shouakar-Stash, O.</au><au>Chudaev, O.</au><au>Kharaka, Y.</au><au>Millot, R.</au><au>Harmon, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic measurement of the dissolution rate of gypsum in water using the reactive infiltration-instability</atitle><jtitle>E3S web of conferences</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>98</volume><spage>4010</spage><pages>4010-</pages><issn>2267-1242</issn><issn>2555-0403</issn><eissn>2267-1242</eissn><abstract>We present an original method for measuring the intrinsic dissolution rate of gypsum. We use a simple microfluidic setup, with a gypsum block inserted between two polycarbonate plates, which is dissolved by water. By changing the flow rate and the distance between the plates, we can scan a wide range of Péclet and Damköhler numbers, characterizing the relative magnitude of advection, diffusion and reaction in the system. We find the dissolution to be unstable, with a formation of a characteristic fingering pattern. The dissolution rate can then be calculated from the initial wavelength of this pattern. Alternatively, it can also be estimated from the time it takes for the gypsum chip to get completely dissolved near the inlet channel. The method presented here is general and can be used to assess the dissolution rates of other minerals.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/e3sconf/20199804010</doi><orcidid>https://orcid.org/0000-0003-1991-7153</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2267-1242
ispartof E3S web of conferences, 2019-01, Vol.98, p.4010
issn 2267-1242
2555-0403
2267-1242
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_041a771be1a54a76848380ef32f8620b
source Publicly Available Content (ProQuest)
subjects Dissolution
Flow rates
Flow velocity
Gypsum
Microfluidics
Minerals
Plates
Polycarbonate
Sciences of the Universe
title Microfluidic measurement of the dissolution rate of gypsum in water using the reactive infiltration-instability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A26%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20measurement%20of%20the%20dissolution%20rate%20of%20gypsum%20in%20water%20using%20the%20reactive%20infiltration-instability&rft.jtitle=E3S%20web%20of%20conferences&rft.au=Osselin,%20Florian&rft.date=2019-01-01&rft.volume=98&rft.spage=4010&rft.pages=4010-&rft.issn=2267-1242&rft.eissn=2267-1242&rft_id=info:doi/10.1051/e3sconf/20199804010&rft_dat=%3Cproquest_doaj_%3E2301900643%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-10f42c81b5d40ab8bc024c40958305b8fdb6edf73fe68cefb0f9ea2a85d7da093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301900643&rft_id=info:pmid/&rfr_iscdi=true