Loading…
Dynamic Rheological Investigation during Curing of a Thermoset Polythiourethane System
A polythiourethane thermoset system based on a diisocyanate and a trithiol was investigated by dynamic rheological measurements. Strain sweep was performed to determine the linear elastic region of the thermosetting system. The changes of characteristic parameters including elastic modulus, viscous...
Saved in:
Published in: | International journal of polymer science 2019-01, Vol.2019 (2019), p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A polythiourethane thermoset system based on a diisocyanate and a trithiol was investigated by dynamic rheological measurements. Strain sweep was performed to determine the linear elastic region of the thermosetting system. The changes of characteristic parameters including elastic modulus, viscous modulus, and complex viscosity were recorded in a heating ramp to trace the cross-linking and structural evolution during the curing process. Time sweep at constant temperatures was also performed to explore possible curing strategy at reduced temperatures. In addition, frequency sweep was conducted to confirm the temperature- and time-dependent viscoelastic properties of the thermoset system during the curing process. Both continuous heating and isothermal aging gave rise to solidification of the polythiourethane with similar critical structure, as evidenced by the critical values of relaxation exponent. A combination of isothermal aging and heating is expected to be a facile strategy for fabricating thermoset polythiourethane polymers at lower temperature or/and reduced curing time. A kinetic study was done to confirm the gelation characteristics of the polythiourethane system, and the activation energy was also calculated. |
---|---|
ISSN: | 1687-9422 1687-9430 |
DOI: | 10.1155/2019/8452793 |