Loading…

Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System

A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti–de Sitter space. This connection provides a rare example of holographic duality betwe...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. X 2017-07, Vol.7 (3), p.031006, Article 031006
Main Authors: Pikulin, D. I., Franz, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-a10df16d03d015e7876fb938494699cd5ff29a0e8d820c5060a42e72a787270e3
cites cdi_FETCH-LOGICAL-c448t-a10df16d03d015e7876fb938494699cd5ff29a0e8d820c5060a42e72a787270e3
container_end_page
container_issue 3
container_start_page 031006
container_title Physical review. X
container_volume 7
creator Pikulin, D. I.
Franz, M.
description A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti–de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.
doi_str_mv 10.1103/PhysRevX.7.031006
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_043fed796e5047649b881ac3766c017c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_043fed796e5047649b881ac3766c017c</doaj_id><sourcerecordid>2550608981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-a10df16d03d015e7876fb938494699cd5ff29a0e8d820c5060a42e72a787270e3</originalsourceid><addsrcrecordid>eNpNkVFrFDEUhQdRsNT-AN8CPs96M8kkGd90UVssWLot6FO4Te64WWebMUkX1l9v1rXFvCT38HHODadpXnNYcA7i7dV6n69p922hFyA4gHrWnHRcQSsEmOf_vV82ZzlvoB4FXGp90swfJnQ_2XmciMV7hmy5DvM7dpXiHDNObIypioeA4Op4TTiF31hCZePIyprYCt3a0679Tu2XUJB2bBs9TSwc3FZxCr5dFSwV3OdC21fNixGnTGf_7tPm9tPHm-V5e_n188Xy_WXrpDSlRQ5-5MqD8MB70kar8W4QRg5SDYPz_Th2AwIZbzpwff0Pyo50h5XsNJA4bS6Ovj7ixs4pbDHtbcRg_wox_bCYSnATWZBiJK8HRT1IreRwZwxHJ7RSDrh21evN0WtO8dcD5WI38SHd1_Vt1x-yzWB4pfiRcinmnGh8SuVgDz3Zx56stseexB-D9oTD</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550608981</pqid></control><display><type>article</type><title>Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System</title><source>Publicly Available Content Database</source><creator>Pikulin, D. I. ; Franz, M.</creator><creatorcontrib>Pikulin, D. I. ; Franz, M.</creatorcontrib><description>A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti–de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.7.031006</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Black holes ; Chaos theory ; Chemical potential ; Correlators ; Dilatons ; Fermions ; Holography ; Information theory ; Magnetic flux ; Mathematical models ; Niobium ; Physical properties ; Physicists ; Quantum mechanics ; Quantum physics ; Relativity ; Solid state ; Theory of relativity ; Topological insulators</subject><ispartof>Physical review. X, 2017-07, Vol.7 (3), p.031006, Article 031006</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-a10df16d03d015e7876fb938494699cd5ff29a0e8d820c5060a42e72a787270e3</citedby><cites>FETCH-LOGICAL-c448t-a10df16d03d015e7876fb938494699cd5ff29a0e8d820c5060a42e72a787270e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2550608981?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25732,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Pikulin, D. I.</creatorcontrib><creatorcontrib>Franz, M.</creatorcontrib><title>Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System</title><title>Physical review. X</title><description>A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti–de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.</description><subject>Black holes</subject><subject>Chaos theory</subject><subject>Chemical potential</subject><subject>Correlators</subject><subject>Dilatons</subject><subject>Fermions</subject><subject>Holography</subject><subject>Information theory</subject><subject>Magnetic flux</subject><subject>Mathematical models</subject><subject>Niobium</subject><subject>Physical properties</subject><subject>Physicists</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Relativity</subject><subject>Solid state</subject><subject>Theory of relativity</subject><subject>Topological insulators</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVFrFDEUhQdRsNT-AN8CPs96M8kkGd90UVssWLot6FO4Te64WWebMUkX1l9v1rXFvCT38HHODadpXnNYcA7i7dV6n69p922hFyA4gHrWnHRcQSsEmOf_vV82ZzlvoB4FXGp90swfJnQ_2XmciMV7hmy5DvM7dpXiHDNObIypioeA4Op4TTiF31hCZePIyprYCt3a0679Tu2XUJB2bBs9TSwc3FZxCr5dFSwV3OdC21fNixGnTGf_7tPm9tPHm-V5e_n188Xy_WXrpDSlRQ5-5MqD8MB70kar8W4QRg5SDYPz_Th2AwIZbzpwff0Pyo50h5XsNJA4bS6Ovj7ixs4pbDHtbcRg_wox_bCYSnATWZBiJK8HRT1IreRwZwxHJ7RSDrh21evN0WtO8dcD5WI38SHd1_Vt1x-yzWB4pfiRcinmnGh8SuVgDz3Zx56stseexB-D9oTD</recordid><startdate>20170713</startdate><enddate>20170713</enddate><creator>Pikulin, D. I.</creator><creator>Franz, M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20170713</creationdate><title>Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System</title><author>Pikulin, D. I. ; Franz, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-a10df16d03d015e7876fb938494699cd5ff29a0e8d820c5060a42e72a787270e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Black holes</topic><topic>Chaos theory</topic><topic>Chemical potential</topic><topic>Correlators</topic><topic>Dilatons</topic><topic>Fermions</topic><topic>Holography</topic><topic>Information theory</topic><topic>Magnetic flux</topic><topic>Mathematical models</topic><topic>Niobium</topic><topic>Physical properties</topic><topic>Physicists</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Relativity</topic><topic>Solid state</topic><topic>Theory of relativity</topic><topic>Topological insulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pikulin, D. I.</creatorcontrib><creatorcontrib>Franz, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Directory of Open Access Journals</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pikulin, D. I.</au><au>Franz, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System</atitle><jtitle>Physical review. X</jtitle><date>2017-07-13</date><risdate>2017</risdate><volume>7</volume><issue>3</issue><spage>031006</spage><pages>031006-</pages><artnum>031006</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti–de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.7.031006</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2017-07, Vol.7 (3), p.031006, Article 031006
issn 2160-3308
2160-3308
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_043fed796e5047649b881ac3766c017c
source Publicly Available Content Database
subjects Black holes
Chaos theory
Chemical potential
Correlators
Dilatons
Fermions
Holography
Information theory
Magnetic flux
Mathematical models
Niobium
Physical properties
Physicists
Quantum mechanics
Quantum physics
Relativity
Solid state
Theory of relativity
Topological insulators
title Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A50%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Black%20Hole%20on%20a%20Chip:%20Proposal%20for%20a%20Physical%20Realization%20of%20the%20Sachdev-Ye-Kitaev%20model%20in%20a%20Solid-State%20System&rft.jtitle=Physical%20review.%20X&rft.au=Pikulin,%20D.%E2%80%89I.&rft.date=2017-07-13&rft.volume=7&rft.issue=3&rft.spage=031006&rft.pages=031006-&rft.artnum=031006&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.7.031006&rft_dat=%3Cproquest_doaj_%3E2550608981%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-a10df16d03d015e7876fb938494699cd5ff29a0e8d820c5060a42e72a787270e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550608981&rft_id=info:pmid/&rfr_iscdi=true