Loading…

A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin

This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC) over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distribu...

Full description

Saved in:
Bibliographic Details
Published in:Hydrology and earth system sciences 2017-09, Vol.21 (9), p.4825-4839
Main Authors: Gaborit, Étienne, Fortin, Vincent, Xu, Xiaoyong, Seglenieks, Frank, Tolson, Bryan, Fry, Lauren M, Hunter, Tim, Anctil, François, Gronewold, Andrew D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-584653b8dcc6caad6eae3b8570c238e6c6f94df77f33a86663f3d091485191cc3
cites cdi_FETCH-LOGICAL-c511t-584653b8dcc6caad6eae3b8570c238e6c6f94df77f33a86663f3d091485191cc3
container_end_page 4839
container_issue 9
container_start_page 4825
container_title Hydrology and earth system sciences
container_volume 21
creator Gaborit, Étienne
Fortin, Vincent
Xu, Xiaoyong
Seglenieks, Frank
Tolson, Bryan
Fry, Lauren M
Hunter, Tim
Anctil, François
Gronewold, Andrew D
description This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC) over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow) land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE) but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE  √  (Nash–Sutcliffe criterion computed on the square root of the flows) is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE  √  in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the complexity and computation burden of the calibration procedure. This work contributes to the Great Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O), which aims at improving Lake Ontario basin runoff simulations by comparing different models using the same input forcings. The main outcome of this study consists in a new generalizable methodology for implementing a distributed hydrologic model with a high computation cost in an efficient and reliable manner, over a large area with ungauged portions, using global calibration
doi_str_mv 10.5194/hess-21-4825-2017
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_04419ada5bc94307925499ccb955df01</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A507097703</galeid><doaj_id>oai_doaj_org_article_04419ada5bc94307925499ccb955df01</doaj_id><sourcerecordid>A507097703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-584653b8dcc6caad6eae3b8570c238e6c6f94df77f33a86663f3d091485191cc3</originalsourceid><addsrcrecordid>eNp9klGPEyEQxzdGE8_TD-AbiU8-7AkLy4JvzeW8a1JziVVfCYWhpe4uFajaT-NXlW0vahNjeICZ_OY_k-FfVS8JvmqJZG82kFLdkJqJpq0bTLpH1QXhuKs7ScXjv95Pq2cpbTFuhODNRfVzhjYHG0Mf1t7oHu0iWG-yDyNKh5RhQCudwKIS5w2g5ecl6vVo67SPThtAyWxggLcInPPGw5hRUfGrqI8SwaHbm_f13dQBuRBRyhH04PrwHSU_7PsH7BvEo_xCfwF0P2YdfZga-_F59cTpPsGLh_uy-vTu5uP1Xb24v51fzxa1aQnJdSsYb-lKWGO40dpy0FDCtsOmoQK44U4y67rOUaoF55w6arEkTJTtEWPoZTU_6dqgt2oX_aDjQQXt1TER4lrpmL3pQWHGiNRWtysjGcWdbFompTEr2bbWYVK0Xp20djF83UPKahv2cSzjq4YRRqXgQvyPKh9KmaQdZ3-otS6t_ehCjtoMPhk1a3GHZddhWqirf1DlWBi8CSM4X_JnBa_PCgqT4Ude631Kar78cM6SE2tiSCmC-70egtVkPjWZTzVETeZTk_noL1Y_zBc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943493764</pqid></control><display><type>article</type><title>A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin</title><source>DOAJ Directory of Open Access Journals</source><source>ProQuest - Publicly Available Content Database</source><creator>Gaborit, Étienne ; Fortin, Vincent ; Xu, Xiaoyong ; Seglenieks, Frank ; Tolson, Bryan ; Fry, Lauren M ; Hunter, Tim ; Anctil, François ; Gronewold, Andrew D</creator><creatorcontrib>Gaborit, Étienne ; Fortin, Vincent ; Xu, Xiaoyong ; Seglenieks, Frank ; Tolson, Bryan ; Fry, Lauren M ; Hunter, Tim ; Anctil, François ; Gronewold, Andrew D</creatorcontrib><description>This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC) over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow) land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE) but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE  √  (Nash–Sutcliffe criterion computed on the square root of the flows) is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE  √  in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the complexity and computation burden of the calibration procedure. This work contributes to the Great Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O), which aims at improving Lake Ontario basin runoff simulations by comparing different models using the same input forcings. The main outcome of this study consists in a new generalizable methodology for implementing a distributed hydrologic model with a high computation cost in an efficient and reliable manner, over a large area with ungauged portions, using global calibration and a unit hydrograph to replace the routing component.</description><identifier>ISSN: 1607-7938</identifier><identifier>ISSN: 1027-5606</identifier><identifier>EISSN: 1607-7938</identifier><identifier>DOI: 10.5194/hess-21-4825-2017</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Algorithms ; Atmospheric models ; Basins ; Basins (Geology) ; Calibration ; Climate change ; Climate models ; Computation ; Computational efficiency ; Computer simulation ; Creeks &amp; streams ; Environment models ; Finite element method ; Hydrologic cycle ; Hydrologic models ; Hydrology ; Lake basins ; Lakes ; Mathematical models ; Modelling ; Natural history ; Objective function ; Parameter identification ; Parameter robustness ; Precipitation ; Predictions ; River basins ; Rivers ; Runoff ; Simulation ; Snow ; Soil ; Stream discharge ; Stream flow ; Streamflow ; Unit hydrographs ; Vegetation ; Weather forecasting</subject><ispartof>Hydrology and earth system sciences, 2017-09, Vol.21 (9), p.4825-4839</ispartof><rights>COPYRIGHT 2017 Copernicus GmbH</rights><rights>Copyright Copernicus GmbH 2017</rights><rights>2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-584653b8dcc6caad6eae3b8570c238e6c6f94df77f33a86663f3d091485191cc3</citedby><cites>FETCH-LOGICAL-c511t-584653b8dcc6caad6eae3b8570c238e6c6f94df77f33a86663f3d091485191cc3</cites><orcidid>0000-0002-9787-9124 ; 0000-0003-4568-4883</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2414398688/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2414398688?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Gaborit, Étienne</creatorcontrib><creatorcontrib>Fortin, Vincent</creatorcontrib><creatorcontrib>Xu, Xiaoyong</creatorcontrib><creatorcontrib>Seglenieks, Frank</creatorcontrib><creatorcontrib>Tolson, Bryan</creatorcontrib><creatorcontrib>Fry, Lauren M</creatorcontrib><creatorcontrib>Hunter, Tim</creatorcontrib><creatorcontrib>Anctil, François</creatorcontrib><creatorcontrib>Gronewold, Andrew D</creatorcontrib><title>A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin</title><title>Hydrology and earth system sciences</title><description>This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC) over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow) land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE) but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE  √  (Nash–Sutcliffe criterion computed on the square root of the flows) is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE  √  in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the complexity and computation burden of the calibration procedure. This work contributes to the Great Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O), which aims at improving Lake Ontario basin runoff simulations by comparing different models using the same input forcings. The main outcome of this study consists in a new generalizable methodology for implementing a distributed hydrologic model with a high computation cost in an efficient and reliable manner, over a large area with ungauged portions, using global calibration and a unit hydrograph to replace the routing component.</description><subject>Algorithms</subject><subject>Atmospheric models</subject><subject>Basins</subject><subject>Basins (Geology)</subject><subject>Calibration</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Creeks &amp; streams</subject><subject>Environment models</subject><subject>Finite element method</subject><subject>Hydrologic cycle</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Lake basins</subject><subject>Lakes</subject><subject>Mathematical models</subject><subject>Modelling</subject><subject>Natural history</subject><subject>Objective function</subject><subject>Parameter identification</subject><subject>Parameter robustness</subject><subject>Precipitation</subject><subject>Predictions</subject><subject>River basins</subject><subject>Rivers</subject><subject>Runoff</subject><subject>Simulation</subject><subject>Snow</subject><subject>Soil</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Streamflow</subject><subject>Unit hydrographs</subject><subject>Vegetation</subject><subject>Weather forecasting</subject><issn>1607-7938</issn><issn>1027-5606</issn><issn>1607-7938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9klGPEyEQxzdGE8_TD-AbiU8-7AkLy4JvzeW8a1JziVVfCYWhpe4uFajaT-NXlW0vahNjeICZ_OY_k-FfVS8JvmqJZG82kFLdkJqJpq0bTLpH1QXhuKs7ScXjv95Pq2cpbTFuhODNRfVzhjYHG0Mf1t7oHu0iWG-yDyNKh5RhQCudwKIS5w2g5ecl6vVo67SPThtAyWxggLcInPPGw5hRUfGrqI8SwaHbm_f13dQBuRBRyhH04PrwHSU_7PsH7BvEo_xCfwF0P2YdfZga-_F59cTpPsGLh_uy-vTu5uP1Xb24v51fzxa1aQnJdSsYb-lKWGO40dpy0FDCtsOmoQK44U4y67rOUaoF55w6arEkTJTtEWPoZTU_6dqgt2oX_aDjQQXt1TER4lrpmL3pQWHGiNRWtysjGcWdbFompTEr2bbWYVK0Xp20djF83UPKahv2cSzjq4YRRqXgQvyPKh9KmaQdZ3-otS6t_ehCjtoMPhk1a3GHZddhWqirf1DlWBi8CSM4X_JnBa_PCgqT4Ude631Kar78cM6SE2tiSCmC-70egtVkPjWZTzVETeZTk_noL1Y_zBc</recordid><startdate>20170928</startdate><enddate>20170928</enddate><creator>Gaborit, Étienne</creator><creator>Fortin, Vincent</creator><creator>Xu, Xiaoyong</creator><creator>Seglenieks, Frank</creator><creator>Tolson, Bryan</creator><creator>Fry, Lauren M</creator><creator>Hunter, Tim</creator><creator>Anctil, François</creator><creator>Gronewold, Andrew D</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9787-9124</orcidid><orcidid>https://orcid.org/0000-0003-4568-4883</orcidid></search><sort><creationdate>20170928</creationdate><title>A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin</title><author>Gaborit, Étienne ; Fortin, Vincent ; Xu, Xiaoyong ; Seglenieks, Frank ; Tolson, Bryan ; Fry, Lauren M ; Hunter, Tim ; Anctil, François ; Gronewold, Andrew D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-584653b8dcc6caad6eae3b8570c238e6c6f94df77f33a86663f3d091485191cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Atmospheric models</topic><topic>Basins</topic><topic>Basins (Geology)</topic><topic>Calibration</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Creeks &amp; streams</topic><topic>Environment models</topic><topic>Finite element method</topic><topic>Hydrologic cycle</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Lake basins</topic><topic>Lakes</topic><topic>Mathematical models</topic><topic>Modelling</topic><topic>Natural history</topic><topic>Objective function</topic><topic>Parameter identification</topic><topic>Parameter robustness</topic><topic>Precipitation</topic><topic>Predictions</topic><topic>River basins</topic><topic>Rivers</topic><topic>Runoff</topic><topic>Simulation</topic><topic>Snow</topic><topic>Soil</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Streamflow</topic><topic>Unit hydrographs</topic><topic>Vegetation</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaborit, Étienne</creatorcontrib><creatorcontrib>Fortin, Vincent</creatorcontrib><creatorcontrib>Xu, Xiaoyong</creatorcontrib><creatorcontrib>Seglenieks, Frank</creatorcontrib><creatorcontrib>Tolson, Bryan</creatorcontrib><creatorcontrib>Fry, Lauren M</creatorcontrib><creatorcontrib>Hunter, Tim</creatorcontrib><creatorcontrib>Anctil, François</creatorcontrib><creatorcontrib>Gronewold, Andrew D</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Hydrology and earth system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaborit, Étienne</au><au>Fortin, Vincent</au><au>Xu, Xiaoyong</au><au>Seglenieks, Frank</au><au>Tolson, Bryan</au><au>Fry, Lauren M</au><au>Hunter, Tim</au><au>Anctil, François</au><au>Gronewold, Andrew D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin</atitle><jtitle>Hydrology and earth system sciences</jtitle><date>2017-09-28</date><risdate>2017</risdate><volume>21</volume><issue>9</issue><spage>4825</spage><epage>4839</epage><pages>4825-4839</pages><issn>1607-7938</issn><issn>1027-5606</issn><eissn>1607-7938</eissn><abstract>This work explores the potential of the distributed GEM-Hydro runoff modeling platform, developed at Environment and Climate Change Canada (ECCC) over the last decade. More precisely, the aim is to develop a robust implementation methodology to perform reliable streamflow simulations with a distributed model over large and partly ungauged basins, in an efficient manner. The latest version of GEM-Hydro combines the SVS (Soil, Vegetation and Snow) land-surface scheme and the WATROUTE routing scheme. SVS has never been evaluated from a hydrological point of view, which is done here for all major rivers flowing into Lake Ontario. Two established hydrological models are confronted to GEM-Hydro, namely MESH and WATFLOOD, which share the same routing scheme (WATROUTE) but rely on different land-surface schemes. All models are calibrated using the same meteorological forcings, objective function, calibration algorithm, and basin delineation. GEM-Hydro is shown to be competitive with MESH and WATFLOOD: the NSE  √  (Nash–Sutcliffe criterion computed on the square root of the flows) is for example equal to 0.83 for MESH and GEM-Hydro in validation on the Moira River basin, and to 0.68 for WATFLOOD. A computationally efficient strategy is proposed to calibrate SVS: a simple unit hydrograph is used for routing instead of WATROUTE. Global and local calibration strategies are compared in order to estimate runoff for ungauged portions of the Lake Ontario basin. Overall, streamflow predictions obtained using a global calibration strategy, in which a single parameter set is identified for the whole basin of Lake Ontario, show accuracy comparable to the predictions based on local calibration: the average NSE  √  in validation and over seven subbasins is 0.73 and 0.61, respectively for local and global calibrations. Hence, global calibration provides spatially consistent parameter values, robust performance at gauged locations, and reduces the complexity and computation burden of the calibration procedure. This work contributes to the Great Lakes Runoff Inter-comparison Project for Lake Ontario (GRIP-O), which aims at improving Lake Ontario basin runoff simulations by comparing different models using the same input forcings. The main outcome of this study consists in a new generalizable methodology for implementing a distributed hydrologic model with a high computation cost in an efficient and reliable manner, over a large area with ungauged portions, using global calibration and a unit hydrograph to replace the routing component.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/hess-21-4825-2017</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9787-9124</orcidid><orcidid>https://orcid.org/0000-0003-4568-4883</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1607-7938
ispartof Hydrology and earth system sciences, 2017-09, Vol.21 (9), p.4825-4839
issn 1607-7938
1027-5606
1607-7938
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_04419ada5bc94307925499ccb955df01
source DOAJ Directory of Open Access Journals; ProQuest - Publicly Available Content Database
subjects Algorithms
Atmospheric models
Basins
Basins (Geology)
Calibration
Climate change
Climate models
Computation
Computational efficiency
Computer simulation
Creeks & streams
Environment models
Finite element method
Hydrologic cycle
Hydrologic models
Hydrology
Lake basins
Lakes
Mathematical models
Modelling
Natural history
Objective function
Parameter identification
Parameter robustness
Precipitation
Predictions
River basins
Rivers
Runoff
Simulation
Snow
Soil
Stream discharge
Stream flow
Streamflow
Unit hydrographs
Vegetation
Weather forecasting
title A hydrological prediction system based on the SVS land-surface scheme: efficient calibration of GEM-Hydro for streamflow simulation over the Lake Ontario basin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A23%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hydrological%20prediction%20system%20based%20on%20the%20SVS%20land-surface%20scheme:%20efficient%20calibration%20of%20GEM-Hydro%20for%20streamflow%20simulation%20over%20the%20Lake%20Ontario%20basin&rft.jtitle=Hydrology%20and%20earth%20system%20sciences&rft.au=Gaborit,%20%C3%83%C2%89tienne&rft.date=2017-09-28&rft.volume=21&rft.issue=9&rft.spage=4825&rft.epage=4839&rft.pages=4825-4839&rft.issn=1607-7938&rft.eissn=1607-7938&rft_id=info:doi/10.5194/hess-21-4825-2017&rft_dat=%3Cgale_doaj_%3EA507097703%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-584653b8dcc6caad6eae3b8570c238e6c6f94df77f33a86663f3d091485191cc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1943493764&rft_id=info:pmid/&rft_galeid=A507097703&rfr_iscdi=true