Loading…
Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps
Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem fr...
Saved in:
Published in: | IUCrJ 2021-07, Vol.8 (4), p.633-643 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c508t-f88d5802caff34a6a7fc3d780d03a5ba6fb946365ae7181872a2a49b90c496a73 |
---|---|
cites | cdi_FETCH-LOGICAL-c508t-f88d5802caff34a6a7fc3d780d03a5ba6fb946365ae7181872a2a49b90c496a73 |
container_end_page | 643 |
container_issue | 4 |
container_start_page | 633 |
container_title | IUCrJ |
container_volume | 8 |
creator | Kelpšas, Vinardas Caldararu, Octav Blakeley, Matthew P. Coquelle, Nicolas Wierenga, Rikkert K. Ryde, Ulf von Wachenfeldt, Claes Oksanen, Esko |
description | Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem from its ability to facilitate the deprotonation of a carbon next to a carbonyl group to generate an enediolate intermediate. The enediolate intermediate is believed to be mimicked by the inhibitor 2-phosphoglycolate (PGA) and the subsequent enediol intermediate by phosphoglycolohydroxamate (PGH). Here, neutron structures of
Leishmania mexicana
TIM have been determined with both inhibitors, and joint neutron/X-ray refinement followed by quantum refinement has been performed. The structures show that in the PGA complex the postulated general base Glu167 is protonated, while in the PGH complex it remains deprotonated. The deuteron is clearly localized on Glu167 in the PGA–TIM structure, suggesting an asymmetric hydrogen bond instead of a low-barrier hydrogen bond. The full picture of the active-site protonation states allowed an investigation of the reaction mechanism using density-functional theory calculations. |
doi_str_mv | 10.1107/S2052252521004619 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_047ea2b1320243b5a3cd4c85a717906f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A665415470</galeid><doaj_id>oai_doaj_org_article_047ea2b1320243b5a3cd4c85a717906f</doaj_id><sourcerecordid>A665415470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-f88d5802caff34a6a7fc3d780d03a5ba6fb946365ae7181872a2a49b90c496a73</originalsourceid><addsrcrecordid>eNplkt-O1CAUxhujcTfrPoB3JN54MytQ_rQ3JpuNq5tM9EK9Jqf0dMqkhQrUXR_Ft5VxNsbREMLh4-MHHE5VvWT0ijGq33zmVHIuS2OUCsXaJ9X5QdoctKd_xWfVZUp7SiljXGrBnldnteCyKfPz6udHXHMMnqQcV5vXiImEgWzRpXEG74DM-OAseCA5upBwGUNaRshIXAozRkgl8sSGeZnwgdy7PJKIYLMLfuN8xjhj7w7-2c3OJpJG7MnkdmMm5dg8IlliyMWcxjXnyflduQsu6UX1bIAp4eXjeFF9vX335ebDZvvp_d3N9XZjJW3yZmiavryFWxiGWoACPdi61w3taQ2yAzV0rVC1koCaNazRHDiItmupFW1x1xfV3ZHbB9ibJboZ4g8TwJnfQog7AzE7O6GhQiPwjtWcclF3EmrbC9tI0Ey3VA2FtT2y0j0ua3dCm9al9K50k9C0rIVe6MbUWikjmOoNiK43fadhKDyULS24t0dcYZUsWvQ5wnRCPV3xbjS78N00XCpNVQG8fgTE8G3FlM3sksVpAo9hTYZLyaRuJK2L9dU_1n1Yoy-ZN1xRIRpB2wPw6ujaQcmH80Mo59rSeiyfGzwOrujXSknBpNCHJ7DjBhtDShGHP7dn1Bzq2PxXx_UvPHLmqA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604484096</pqid></control><display><type>article</type><title>Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Kelpšas, Vinardas ; Caldararu, Octav ; Blakeley, Matthew P. ; Coquelle, Nicolas ; Wierenga, Rikkert K. ; Ryde, Ulf ; von Wachenfeldt, Claes ; Oksanen, Esko</creator><creatorcontrib>Kelpšas, Vinardas ; Caldararu, Octav ; Blakeley, Matthew P. ; Coquelle, Nicolas ; Wierenga, Rikkert K. ; Ryde, Ulf ; von Wachenfeldt, Claes ; Oksanen, Esko</creatorcontrib><description>Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem from its ability to facilitate the deprotonation of a carbon next to a carbonyl group to generate an enediolate intermediate. The enediolate intermediate is believed to be mimicked by the inhibitor 2-phosphoglycolate (PGA) and the subsequent enediol intermediate by phosphoglycolohydroxamate (PGH). Here, neutron structures of
Leishmania mexicana
TIM have been determined with both inhibitors, and joint neutron/X-ray refinement followed by quantum refinement has been performed. The structures show that in the PGA complex the postulated general base Glu167 is protonated, while in the PGH complex it remains deprotonated. The deuteron is clearly localized on Glu167 in the PGA–TIM structure, suggesting an asymmetric hydrogen bond instead of a low-barrier hydrogen bond. The full picture of the active-site protonation states allowed an investigation of the reaction mechanism using density-functional theory calculations.</description><identifier>ISSN: 2052-2525</identifier><identifier>EISSN: 2052-2525</identifier><identifier>DOI: 10.1107/S2052252521004619</identifier><identifier>PMID: 34258011</identifier><language>eng</language><publisher>Chester: International Union of Crystallography</publisher><subject>Biochemistry and Molecular Biology ; Biokemi och molekylärbiologi ; Biologi ; Biological Sciences ; Carbonyl groups ; Carbonyls ; Density functional theory ; Deuterons ; enzyme mechanisms ; Enzymes ; Glycolysis ; Hydrogen ; Hydrogen bonds ; isomerization ; Monosaccharides ; Natural Sciences ; Naturvetenskap ; neutron crystallography ; neutron diffraction ; Phosphates ; Protonation ; Protons ; qm/mm ; quantum refinement ; Reaction intermediates ; Reaction mechanisms ; refinement ; Research Papers ; structural biology ; Sugars ; triosephosphate isomerase</subject><ispartof>IUCrJ, 2021-07, Vol.8 (4), p.633-643</ispartof><rights>COPYRIGHT 2021 International Union of Crystallography</rights><rights>2021. This article is published under https://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Vinardas Kelpšas et al. 2021 2021</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-f88d5802caff34a6a7fc3d780d03a5ba6fb946365ae7181872a2a49b90c496a73</citedby><cites>FETCH-LOGICAL-c508t-f88d5802caff34a6a7fc3d780d03a5ba6fb946365ae7181872a2a49b90c496a73</cites><orcidid>0000-0002-5900-6568 ; 0000-0002-6412-4358 ; 0000-0002-1841-4813 ; 0000-0002-8501-4908 ; 0000-0001-8950-3218 ; 0000-0001-6554-471X ; 0000-0001-7653-8489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8256706/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2604484096?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/919ad478-3766-416d-a4bd-db7afa71e590$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelpšas, Vinardas</creatorcontrib><creatorcontrib>Caldararu, Octav</creatorcontrib><creatorcontrib>Blakeley, Matthew P.</creatorcontrib><creatorcontrib>Coquelle, Nicolas</creatorcontrib><creatorcontrib>Wierenga, Rikkert K.</creatorcontrib><creatorcontrib>Ryde, Ulf</creatorcontrib><creatorcontrib>von Wachenfeldt, Claes</creatorcontrib><creatorcontrib>Oksanen, Esko</creatorcontrib><title>Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps</title><title>IUCrJ</title><description>Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem from its ability to facilitate the deprotonation of a carbon next to a carbonyl group to generate an enediolate intermediate. The enediolate intermediate is believed to be mimicked by the inhibitor 2-phosphoglycolate (PGA) and the subsequent enediol intermediate by phosphoglycolohydroxamate (PGH). Here, neutron structures of
Leishmania mexicana
TIM have been determined with both inhibitors, and joint neutron/X-ray refinement followed by quantum refinement has been performed. The structures show that in the PGA complex the postulated general base Glu167 is protonated, while in the PGH complex it remains deprotonated. The deuteron is clearly localized on Glu167 in the PGA–TIM structure, suggesting an asymmetric hydrogen bond instead of a low-barrier hydrogen bond. The full picture of the active-site protonation states allowed an investigation of the reaction mechanism using density-functional theory calculations.</description><subject>Biochemistry and Molecular Biology</subject><subject>Biokemi och molekylärbiologi</subject><subject>Biologi</subject><subject>Biological Sciences</subject><subject>Carbonyl groups</subject><subject>Carbonyls</subject><subject>Density functional theory</subject><subject>Deuterons</subject><subject>enzyme mechanisms</subject><subject>Enzymes</subject><subject>Glycolysis</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>isomerization</subject><subject>Monosaccharides</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>neutron crystallography</subject><subject>neutron diffraction</subject><subject>Phosphates</subject><subject>Protonation</subject><subject>Protons</subject><subject>qm/mm</subject><subject>quantum refinement</subject><subject>Reaction intermediates</subject><subject>Reaction mechanisms</subject><subject>refinement</subject><subject>Research Papers</subject><subject>structural biology</subject><subject>Sugars</subject><subject>triosephosphate isomerase</subject><issn>2052-2525</issn><issn>2052-2525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNplkt-O1CAUxhujcTfrPoB3JN54MytQ_rQ3JpuNq5tM9EK9Jqf0dMqkhQrUXR_Ft5VxNsbREMLh4-MHHE5VvWT0ijGq33zmVHIuS2OUCsXaJ9X5QdoctKd_xWfVZUp7SiljXGrBnldnteCyKfPz6udHXHMMnqQcV5vXiImEgWzRpXEG74DM-OAseCA5upBwGUNaRshIXAozRkgl8sSGeZnwgdy7PJKIYLMLfuN8xjhj7w7-2c3OJpJG7MnkdmMm5dg8IlliyMWcxjXnyflduQsu6UX1bIAp4eXjeFF9vX335ebDZvvp_d3N9XZjJW3yZmiavryFWxiGWoACPdi61w3taQ2yAzV0rVC1koCaNazRHDiItmupFW1x1xfV3ZHbB9ibJboZ4g8TwJnfQog7AzE7O6GhQiPwjtWcclF3EmrbC9tI0Ey3VA2FtT2y0j0ua3dCm9al9K50k9C0rIVe6MbUWikjmOoNiK43fadhKDyULS24t0dcYZUsWvQ5wnRCPV3xbjS78N00XCpNVQG8fgTE8G3FlM3sksVpAo9hTYZLyaRuJK2L9dU_1n1Yoy-ZN1xRIRpB2wPw6ujaQcmH80Mo59rSeiyfGzwOrujXSknBpNCHJ7DjBhtDShGHP7dn1Bzq2PxXx_UvPHLmqA</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Kelpšas, Vinardas</creator><creator>Caldararu, Octav</creator><creator>Blakeley, Matthew P.</creator><creator>Coquelle, Nicolas</creator><creator>Wierenga, Rikkert K.</creator><creator>Ryde, Ulf</creator><creator>von Wachenfeldt, Claes</creator><creator>Oksanen, Esko</creator><general>International Union of Crystallography</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>EHMNL</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5900-6568</orcidid><orcidid>https://orcid.org/0000-0002-6412-4358</orcidid><orcidid>https://orcid.org/0000-0002-1841-4813</orcidid><orcidid>https://orcid.org/0000-0002-8501-4908</orcidid><orcidid>https://orcid.org/0000-0001-8950-3218</orcidid><orcidid>https://orcid.org/0000-0001-6554-471X</orcidid><orcidid>https://orcid.org/0000-0001-7653-8489</orcidid></search><sort><creationdate>20210701</creationdate><title>Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps</title><author>Kelpšas, Vinardas ; Caldararu, Octav ; Blakeley, Matthew P. ; Coquelle, Nicolas ; Wierenga, Rikkert K. ; Ryde, Ulf ; von Wachenfeldt, Claes ; Oksanen, Esko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-f88d5802caff34a6a7fc3d780d03a5ba6fb946365ae7181872a2a49b90c496a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry and Molecular Biology</topic><topic>Biokemi och molekylärbiologi</topic><topic>Biologi</topic><topic>Biological Sciences</topic><topic>Carbonyl groups</topic><topic>Carbonyls</topic><topic>Density functional theory</topic><topic>Deuterons</topic><topic>enzyme mechanisms</topic><topic>Enzymes</topic><topic>Glycolysis</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>isomerization</topic><topic>Monosaccharides</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>neutron crystallography</topic><topic>neutron diffraction</topic><topic>Phosphates</topic><topic>Protonation</topic><topic>Protons</topic><topic>qm/mm</topic><topic>quantum refinement</topic><topic>Reaction intermediates</topic><topic>Reaction mechanisms</topic><topic>refinement</topic><topic>Research Papers</topic><topic>structural biology</topic><topic>Sugars</topic><topic>triosephosphate isomerase</topic><toplevel>online_resources</toplevel><creatorcontrib>Kelpšas, Vinardas</creatorcontrib><creatorcontrib>Caldararu, Octav</creatorcontrib><creatorcontrib>Blakeley, Matthew P.</creatorcontrib><creatorcontrib>Coquelle, Nicolas</creatorcontrib><creatorcontrib>Wierenga, Rikkert K.</creatorcontrib><creatorcontrib>Ryde, Ulf</creatorcontrib><creatorcontrib>von Wachenfeldt, Claes</creatorcontrib><creatorcontrib>Oksanen, Esko</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>UK & Ireland Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>IUCrJ</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelpšas, Vinardas</au><au>Caldararu, Octav</au><au>Blakeley, Matthew P.</au><au>Coquelle, Nicolas</au><au>Wierenga, Rikkert K.</au><au>Ryde, Ulf</au><au>von Wachenfeldt, Claes</au><au>Oksanen, Esko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps</atitle><jtitle>IUCrJ</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>8</volume><issue>4</issue><spage>633</spage><epage>643</epage><pages>633-643</pages><issn>2052-2525</issn><eissn>2052-2525</eissn><abstract>Triosephosphate isomerase (TIM) is a key enzyme in glycolysis that catalyses the interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This simple reaction involves the shuttling of protons mediated by protolysable side chains. The catalytic power of TIM is thought to stem from its ability to facilitate the deprotonation of a carbon next to a carbonyl group to generate an enediolate intermediate. The enediolate intermediate is believed to be mimicked by the inhibitor 2-phosphoglycolate (PGA) and the subsequent enediol intermediate by phosphoglycolohydroxamate (PGH). Here, neutron structures of
Leishmania mexicana
TIM have been determined with both inhibitors, and joint neutron/X-ray refinement followed by quantum refinement has been performed. The structures show that in the PGA complex the postulated general base Glu167 is protonated, while in the PGH complex it remains deprotonated. The deuteron is clearly localized on Glu167 in the PGA–TIM structure, suggesting an asymmetric hydrogen bond instead of a low-barrier hydrogen bond. The full picture of the active-site protonation states allowed an investigation of the reaction mechanism using density-functional theory calculations.</abstract><cop>Chester</cop><pub>International Union of Crystallography</pub><pmid>34258011</pmid><doi>10.1107/S2052252521004619</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5900-6568</orcidid><orcidid>https://orcid.org/0000-0002-6412-4358</orcidid><orcidid>https://orcid.org/0000-0002-1841-4813</orcidid><orcidid>https://orcid.org/0000-0002-8501-4908</orcidid><orcidid>https://orcid.org/0000-0001-8950-3218</orcidid><orcidid>https://orcid.org/0000-0001-6554-471X</orcidid><orcidid>https://orcid.org/0000-0001-7653-8489</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2052-2525 |
ispartof | IUCrJ, 2021-07, Vol.8 (4), p.633-643 |
issn | 2052-2525 2052-2525 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_047ea2b1320243b5a3cd4c85a717906f |
source | PubMed Central Free; Publicly Available Content Database |
subjects | Biochemistry and Molecular Biology Biokemi och molekylärbiologi Biologi Biological Sciences Carbonyl groups Carbonyls Density functional theory Deuterons enzyme mechanisms Enzymes Glycolysis Hydrogen Hydrogen bonds isomerization Monosaccharides Natural Sciences Naturvetenskap neutron crystallography neutron diffraction Phosphates Protonation Protons qm/mm quantum refinement Reaction intermediates Reaction mechanisms refinement Research Papers structural biology Sugars triosephosphate isomerase |
title | Neutron structures of Leishmania mexicana triosephosphate isomerase in complex with reaction-intermediate mimics shed light on the proton-shuttling steps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neutron%20structures%20of%20Leishmania%20mexicana%20triosephosphate%20isomerase%20in%20complex%20with%20reaction-intermediate%20mimics%20shed%20light%20on%20the%20proton-shuttling%20steps&rft.jtitle=IUCrJ&rft.au=Kelp%C5%A1as,%20Vinardas&rft.date=2021-07-01&rft.volume=8&rft.issue=4&rft.spage=633&rft.epage=643&rft.pages=633-643&rft.issn=2052-2525&rft.eissn=2052-2525&rft_id=info:doi/10.1107/S2052252521004619&rft_dat=%3Cgale_doaj_%3EA665415470%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c508t-f88d5802caff34a6a7fc3d780d03a5ba6fb946365ae7181872a2a49b90c496a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2604484096&rft_id=info:pmid/34258011&rft_galeid=A665415470&rfr_iscdi=true |