Loading…

Impact of Module-X2 and Carbohydrate Binding Module-3 on the catalytic activity of associated glycoside hydrolases towards plant biomass

Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-06, Vol.7 (1), p.3700-15, Article 3700
Main Authors: Pasari, Nandita, Adlakha, Nidhi, Gupta, Mayank, Bashir, Zeenat, Rajacharya, Girish H., Verma, Garima, Munde, Manoj, Bhatnagar, Rakesh, Yazdani, Syed Shams
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c606t-317001ea02ed6b538b8685f8857a4033623e7ef5da8a634f99b9281d42aecda63
cites cdi_FETCH-LOGICAL-c606t-317001ea02ed6b538b8685f8857a4033623e7ef5da8a634f99b9281d42aecda63
container_end_page 15
container_issue 1
container_start_page 3700
container_title Scientific reports
container_volume 7
creator Pasari, Nandita
Adlakha, Nidhi
Gupta, Mayank
Bashir, Zeenat
Rajacharya, Girish H.
Verma, Garima
Munde, Manoj
Bhatnagar, Rakesh
Yazdani, Syed Shams
description Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which enhances their activity towards recalcitrant biomass. In the present study, the genome of a cellulolytic microbe Paenibacillus polymyxa A18 was annotated for the presence of CBMs and analyzed their expression in response to the plant biomass and model polysaccharides Avicel, CMC and xylan using quantitative PCR. A gene that encodes X2-CBM3 was found to be maximally induced in response to the biomass and crystalline substrate Avicel. Association of X2-CBM3 with xyloglucanase and endoglucanase led to up to 4.6-fold increase in activity towards insoluble substrates. In the substrate binding study, module X2 showed a higher affinity towards biomass and phosphoric acid swollen cellulose, whereas CBM3 showed a higher affinity towards Avicel. Further structural modeling of X2 also indicated its potential role in substrate binding. Our findings highlighted the role of module X2 along with CBM3 in assisting the enzyme catalysis of agricultural residue and paved the way to engineer glycoside hydrolases for superior activity.
doi_str_mv 10.1038/s41598-017-03927-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_04a61df7867e4e64816782d6cea0225a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_04a61df7867e4e64816782d6cea0225a</doaj_id><sourcerecordid>1910800779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-317001ea02ed6b538b8685f8857a4033623e7ef5da8a634f99b9281d42aecda63</originalsourceid><addsrcrecordid>eNp1kstu1DAUhiMEolXpC7BAltiwCfgSX7JBghGXkYrYgMTOOrGdGY8y8WA7rfIGPDaepq2mSHhjy_7OZx_rr6qXBL8lmKl3qSG8VTUmssaspbKen1TnFDe8pozSpyfrs-oypR0ug9O2Ie3z6owqQRlj8rz6s94fwGQUevQt2Glw9S-KYLRoBbEL29lGyA599KP14-YeYSiMKG8dMpBhmLM3qDj8tc_zUQQpBeNLnUWbYTYheevQURUGSC6hHG4g2oQOA4wZdT7sS8WL6lkPQ3KXd_NF9fPzpx-rr_XV9y_r1Yer2ggscs2IxJg4wNRZ0XGmOiUU75XiEhrMWOnLSddzCwoEa_q27VqqiG0oOGPL1kW1Xrw2wE4fot9DnHUAr283QtxoiKWjwWncgCC2l0pI1zjRKCKkolaY4_WUQ3G9X1yHqds7a9yYIwyPpI9PRr_Vm3CteSOZUrII3twJYvg9uZT13ifjhvIxLkxJk5ZghbGUbUFf_4PuwhTH8lWF4lwURvFC0YUyMaQUXf_wGIL1MTd6yY0uudG3udFzKXp12sZDyX1KCsAWIJWjcePiyd3_1_4FdDPPvQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955677985</pqid></control><display><type>article</type><title>Impact of Module-X2 and Carbohydrate Binding Module-3 on the catalytic activity of associated glycoside hydrolases towards plant biomass</title><source>Open Access: PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Pasari, Nandita ; Adlakha, Nidhi ; Gupta, Mayank ; Bashir, Zeenat ; Rajacharya, Girish H. ; Verma, Garima ; Munde, Manoj ; Bhatnagar, Rakesh ; Yazdani, Syed Shams</creator><creatorcontrib>Pasari, Nandita ; Adlakha, Nidhi ; Gupta, Mayank ; Bashir, Zeenat ; Rajacharya, Girish H. ; Verma, Garima ; Munde, Manoj ; Bhatnagar, Rakesh ; Yazdani, Syed Shams</creatorcontrib><description>Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which enhances their activity towards recalcitrant biomass. In the present study, the genome of a cellulolytic microbe Paenibacillus polymyxa A18 was annotated for the presence of CBMs and analyzed their expression in response to the plant biomass and model polysaccharides Avicel, CMC and xylan using quantitative PCR. A gene that encodes X2-CBM3 was found to be maximally induced in response to the biomass and crystalline substrate Avicel. Association of X2-CBM3 with xyloglucanase and endoglucanase led to up to 4.6-fold increase in activity towards insoluble substrates. In the substrate binding study, module X2 showed a higher affinity towards biomass and phosphoric acid swollen cellulose, whereas CBM3 showed a higher affinity towards Avicel. Further structural modeling of X2 also indicated its potential role in substrate binding. Our findings highlighted the role of module X2 along with CBM3 in assisting the enzyme catalysis of agricultural residue and paved the way to engineer glycoside hydrolases for superior activity.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-03927-y</identifier><identifier>PMID: 28623337</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/61/185 ; 631/61/338/469 ; 82/29 ; 82/80 ; 82/83 ; Affinity ; Biomass ; Carbohydrate Metabolism ; Carbohydrates - chemistry ; Catalysis ; Cellulolytic enzymes ; Cellulose ; Crop residues ; Endoglucanase ; Enzymes ; Genomes ; Glycoside Hydrolases - chemistry ; Glycoside Hydrolases - metabolism ; Glycosides - metabolism ; Humanities and Social Sciences ; Hydrolysis ; Models, Molecular ; Molecular Conformation ; multidisciplinary ; Phosphoric acid ; Plant biomass ; Plants - chemistry ; Plants - metabolism ; Polysaccharides ; Protein Binding ; Saccharides ; Science ; Science (multidisciplinary) ; Solubility ; Structure-Activity Relationship ; Substrates ; Xylan</subject><ispartof>Scientific reports, 2017-06, Vol.7 (1), p.3700-15, Article 3700</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jun 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-317001ea02ed6b538b8685f8857a4033623e7ef5da8a634f99b9281d42aecda63</citedby><cites>FETCH-LOGICAL-c606t-317001ea02ed6b538b8685f8857a4033623e7ef5da8a634f99b9281d42aecda63</cites><orcidid>0000-0002-6558-4612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1955677985/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1955677985?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28623337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasari, Nandita</creatorcontrib><creatorcontrib>Adlakha, Nidhi</creatorcontrib><creatorcontrib>Gupta, Mayank</creatorcontrib><creatorcontrib>Bashir, Zeenat</creatorcontrib><creatorcontrib>Rajacharya, Girish H.</creatorcontrib><creatorcontrib>Verma, Garima</creatorcontrib><creatorcontrib>Munde, Manoj</creatorcontrib><creatorcontrib>Bhatnagar, Rakesh</creatorcontrib><creatorcontrib>Yazdani, Syed Shams</creatorcontrib><title>Impact of Module-X2 and Carbohydrate Binding Module-3 on the catalytic activity of associated glycoside hydrolases towards plant biomass</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which enhances their activity towards recalcitrant biomass. In the present study, the genome of a cellulolytic microbe Paenibacillus polymyxa A18 was annotated for the presence of CBMs and analyzed their expression in response to the plant biomass and model polysaccharides Avicel, CMC and xylan using quantitative PCR. A gene that encodes X2-CBM3 was found to be maximally induced in response to the biomass and crystalline substrate Avicel. Association of X2-CBM3 with xyloglucanase and endoglucanase led to up to 4.6-fold increase in activity towards insoluble substrates. In the substrate binding study, module X2 showed a higher affinity towards biomass and phosphoric acid swollen cellulose, whereas CBM3 showed a higher affinity towards Avicel. Further structural modeling of X2 also indicated its potential role in substrate binding. Our findings highlighted the role of module X2 along with CBM3 in assisting the enzyme catalysis of agricultural residue and paved the way to engineer glycoside hydrolases for superior activity.</description><subject>631/61/185</subject><subject>631/61/338/469</subject><subject>82/29</subject><subject>82/80</subject><subject>82/83</subject><subject>Affinity</subject><subject>Biomass</subject><subject>Carbohydrate Metabolism</subject><subject>Carbohydrates - chemistry</subject><subject>Catalysis</subject><subject>Cellulolytic enzymes</subject><subject>Cellulose</subject><subject>Crop residues</subject><subject>Endoglucanase</subject><subject>Enzymes</subject><subject>Genomes</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Glycosides - metabolism</subject><subject>Humanities and Social Sciences</subject><subject>Hydrolysis</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>multidisciplinary</subject><subject>Phosphoric acid</subject><subject>Plant biomass</subject><subject>Plants - chemistry</subject><subject>Plants - metabolism</subject><subject>Polysaccharides</subject><subject>Protein Binding</subject><subject>Saccharides</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solubility</subject><subject>Structure-Activity Relationship</subject><subject>Substrates</subject><subject>Xylan</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kstu1DAUhiMEolXpC7BAltiwCfgSX7JBghGXkYrYgMTOOrGdGY8y8WA7rfIGPDaepq2mSHhjy_7OZx_rr6qXBL8lmKl3qSG8VTUmssaspbKen1TnFDe8pozSpyfrs-oypR0ug9O2Ie3z6owqQRlj8rz6s94fwGQUevQt2Glw9S-KYLRoBbEL29lGyA599KP14-YeYSiMKG8dMpBhmLM3qDj8tc_zUQQpBeNLnUWbYTYheevQURUGSC6hHG4g2oQOA4wZdT7sS8WL6lkPQ3KXd_NF9fPzpx-rr_XV9y_r1Yer2ggscs2IxJg4wNRZ0XGmOiUU75XiEhrMWOnLSddzCwoEa_q27VqqiG0oOGPL1kW1Xrw2wE4fot9DnHUAr283QtxoiKWjwWncgCC2l0pI1zjRKCKkolaY4_WUQ3G9X1yHqds7a9yYIwyPpI9PRr_Vm3CteSOZUrII3twJYvg9uZT13ifjhvIxLkxJk5ZghbGUbUFf_4PuwhTH8lWF4lwURvFC0YUyMaQUXf_wGIL1MTd6yY0uudG3udFzKXp12sZDyX1KCsAWIJWjcePiyd3_1_4FdDPPvQ</recordid><startdate>20170616</startdate><enddate>20170616</enddate><creator>Pasari, Nandita</creator><creator>Adlakha, Nidhi</creator><creator>Gupta, Mayank</creator><creator>Bashir, Zeenat</creator><creator>Rajacharya, Girish H.</creator><creator>Verma, Garima</creator><creator>Munde, Manoj</creator><creator>Bhatnagar, Rakesh</creator><creator>Yazdani, Syed Shams</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6558-4612</orcidid></search><sort><creationdate>20170616</creationdate><title>Impact of Module-X2 and Carbohydrate Binding Module-3 on the catalytic activity of associated glycoside hydrolases towards plant biomass</title><author>Pasari, Nandita ; Adlakha, Nidhi ; Gupta, Mayank ; Bashir, Zeenat ; Rajacharya, Girish H. ; Verma, Garima ; Munde, Manoj ; Bhatnagar, Rakesh ; Yazdani, Syed Shams</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-317001ea02ed6b538b8685f8857a4033623e7ef5da8a634f99b9281d42aecda63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/61/185</topic><topic>631/61/338/469</topic><topic>82/29</topic><topic>82/80</topic><topic>82/83</topic><topic>Affinity</topic><topic>Biomass</topic><topic>Carbohydrate Metabolism</topic><topic>Carbohydrates - chemistry</topic><topic>Catalysis</topic><topic>Cellulolytic enzymes</topic><topic>Cellulose</topic><topic>Crop residues</topic><topic>Endoglucanase</topic><topic>Enzymes</topic><topic>Genomes</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Glycosides - metabolism</topic><topic>Humanities and Social Sciences</topic><topic>Hydrolysis</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>multidisciplinary</topic><topic>Phosphoric acid</topic><topic>Plant biomass</topic><topic>Plants - chemistry</topic><topic>Plants - metabolism</topic><topic>Polysaccharides</topic><topic>Protein Binding</topic><topic>Saccharides</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solubility</topic><topic>Structure-Activity Relationship</topic><topic>Substrates</topic><topic>Xylan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasari, Nandita</creatorcontrib><creatorcontrib>Adlakha, Nidhi</creatorcontrib><creatorcontrib>Gupta, Mayank</creatorcontrib><creatorcontrib>Bashir, Zeenat</creatorcontrib><creatorcontrib>Rajacharya, Girish H.</creatorcontrib><creatorcontrib>Verma, Garima</creatorcontrib><creatorcontrib>Munde, Manoj</creatorcontrib><creatorcontrib>Bhatnagar, Rakesh</creatorcontrib><creatorcontrib>Yazdani, Syed Shams</creatorcontrib><collection>SpringerOpen website</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasari, Nandita</au><au>Adlakha, Nidhi</au><au>Gupta, Mayank</au><au>Bashir, Zeenat</au><au>Rajacharya, Girish H.</au><au>Verma, Garima</au><au>Munde, Manoj</au><au>Bhatnagar, Rakesh</au><au>Yazdani, Syed Shams</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of Module-X2 and Carbohydrate Binding Module-3 on the catalytic activity of associated glycoside hydrolases towards plant biomass</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-06-16</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>3700</spage><epage>15</epage><pages>3700-15</pages><artnum>3700</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Cellulolytic enzymes capable of hydrolyzing plant biomass are secreted by microbial cells specifically in response to the carbon substrate present in the environment. These enzymes consist of a catalytic domain, generally appended to one or more non-catalytic Carbohydrate Binding Module (CBM), which enhances their activity towards recalcitrant biomass. In the present study, the genome of a cellulolytic microbe Paenibacillus polymyxa A18 was annotated for the presence of CBMs and analyzed their expression in response to the plant biomass and model polysaccharides Avicel, CMC and xylan using quantitative PCR. A gene that encodes X2-CBM3 was found to be maximally induced in response to the biomass and crystalline substrate Avicel. Association of X2-CBM3 with xyloglucanase and endoglucanase led to up to 4.6-fold increase in activity towards insoluble substrates. In the substrate binding study, module X2 showed a higher affinity towards biomass and phosphoric acid swollen cellulose, whereas CBM3 showed a higher affinity towards Avicel. Further structural modeling of X2 also indicated its potential role in substrate binding. Our findings highlighted the role of module X2 along with CBM3 in assisting the enzyme catalysis of agricultural residue and paved the way to engineer glycoside hydrolases for superior activity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28623337</pmid><doi>10.1038/s41598-017-03927-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6558-4612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-06, Vol.7 (1), p.3700-15, Article 3700
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_04a61df7867e4e64816782d6cea0225a
source Open Access: PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access; ProQuest Publicly Available Content database
subjects 631/61/185
631/61/338/469
82/29
82/80
82/83
Affinity
Biomass
Carbohydrate Metabolism
Carbohydrates - chemistry
Catalysis
Cellulolytic enzymes
Cellulose
Crop residues
Endoglucanase
Enzymes
Genomes
Glycoside Hydrolases - chemistry
Glycoside Hydrolases - metabolism
Glycosides - metabolism
Humanities and Social Sciences
Hydrolysis
Models, Molecular
Molecular Conformation
multidisciplinary
Phosphoric acid
Plant biomass
Plants - chemistry
Plants - metabolism
Polysaccharides
Protein Binding
Saccharides
Science
Science (multidisciplinary)
Solubility
Structure-Activity Relationship
Substrates
Xylan
title Impact of Module-X2 and Carbohydrate Binding Module-3 on the catalytic activity of associated glycoside hydrolases towards plant biomass
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20Module-X2%20and%20Carbohydrate%20Binding%20Module-3%20on%20the%20catalytic%20activity%20of%20associated%20glycoside%20hydrolases%20towards%20plant%20biomass&rft.jtitle=Scientific%20reports&rft.au=Pasari,%20Nandita&rft.date=2017-06-16&rft.volume=7&rft.issue=1&rft.spage=3700&rft.epage=15&rft.pages=3700-15&rft.artnum=3700&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-03927-y&rft_dat=%3Cproquest_doaj_%3E1910800779%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c606t-317001ea02ed6b538b8685f8857a4033623e7ef5da8a634f99b9281d42aecda63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955677985&rft_id=info:pmid/28623337&rfr_iscdi=true