Loading…

Isolation and Characterization of Canine Adipose-Derived Mesenchymal Stromal Cells: Considerations in Translation from Laboratory to Clinic

In allogeneic MSC implantation, the cells are isolated from a donor different from the recipient. When tested, allogeneic MSCs have several advantages over autologous ones: faster cell growth, sufficient cell concentration, and readily available cells for clinics. To ensure the safe and efficient us...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) 2024-10, Vol.14 (20), p.2974
Main Authors: Rivera Orsini, Michael A, Ozmen, Emine Berfu, Miles, Alyssa, Newby, Steven D, Springer, Nora, Millis, Darryl, Dhar, Madhu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In allogeneic MSC implantation, the cells are isolated from a donor different from the recipient. When tested, allogeneic MSCs have several advantages over autologous ones: faster cell growth, sufficient cell concentration, and readily available cells for clinics. To ensure the safe and efficient use of allogeneic MSCs in clinics, the MSCs need to be first tested in vitro. With this study, we paved the way by addressing the in vitro aspects of canine adipose-derived MSCs, considering the limited studies on the clinical use of canine cells. We isolated cAD-MSCs from canine falciform ligament fat and evaluated their viability and proliferation using an MTS assay. Then, we characterized the MSC-specific antigens using immunophenotyping and immunofluorescence and demonstrated their potential for in vitro differentiation. Moreover, we established shipping and cryobanking procedures to lead the study to become an off-the-shelf therapy. During expansion, the cells demonstrated a linear increase in cell numbers, confirming their proliferation quantitatively. The cells showed viability before and after cryopreservation, demonstrating that cell viability can be preserved. From a clinical perspective, the established shipping conditions demonstrated that the cells retain their viability for up to 48 h. This study lays the groundwork for the potential use of allogeneic cAD-MSCs in clinical applications.
ISSN:2076-2615
2076-2615
DOI:10.3390/ani14202974