Loading…

Control of the Solar Radiation Reception Rate (SRRR) Using a Novel Poly-Tilted Segmented Panel (PTSP) in the Region of Makkah, Saudi Arabia

This work deals with controlling the solar radiation reception rate (SRRR) (ratio of the incident solar radiation on tilted panel to the global incident solar radiation). Controlling the SRRR will permit the amount of the received solar energy on solar panels to be adjusted. This SRRR control is ver...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2022-04, Vol.15 (7), p.2357
Main Authors: Alqurashi, Faris, Nciri, Rached, Alghamdi, Abdulrahman, Ali, Chaouki, Nasri, Faouzi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work deals with controlling the solar radiation reception rate (SRRR) (ratio of the incident solar radiation on tilted panel to the global incident solar radiation). Controlling the SRRR will permit the amount of the received solar energy on solar panels to be adjusted. This SRRR control is very useful for several technological applications such as solar thermal and photovoltaic technologies in extremely sunny regions around the world, such as the case of Makkah, Saudi Arabia. Thus, the sustainability of the cities and villages, located in such regions, is promoted. A novel design proposing a poly-tilted segmented panel (PTSP) is proposed as an original techno-logical solution enabling the control of the SRRR. Design technical details are clearly explained. The proposed design presents a cheap, simple and effective alternative to conventional sun tracking systems. The SRRR on the proposed PTSP is mathematically modeled. The influence of the combinations “number of segment/tilt angles” on the SRRR is assessed for the most significant days in the year: equinox, summer solstice and winter solstice. A specific “document-aided design”, showing the SRRR level reached by each specific combination “num-ber of segment/tilt angles”, is provided. Based on these documents, the adequate combination “number of segment/tilt angles” is easily determined by knowing the desired SRRR level. The SRRR level is determined based on the global incident solar radiation and the desired level of the incident so-lar radiation on the tilted panel. Results are properly presented, discussed and interpreted for each segment/tilt angles combination.
ISSN:1996-1073
1996-1073
DOI:10.3390/en15072357