Loading…

Development and Validation of a Zone Fire Model Embedding Multi-Fuel Combustion

This paper presents the development and validation of a two-zone model to predict fire development in a compartment. The model includes the effects of the ceiling jet on the convective heat transfer to enclosure walls and, unlike existing models, a new concept of surrogate fuel molecule (SFM) to mod...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2022-04, Vol.12 (8), p.3951
Main Authors: Porterie, Bernard, Pizzo, Yannick, Mense, Maxime, Sardoy, Nicolas, Louiche, Julien, Dizet, Nina, Porterie, Timothé, Pouschat, Priscilla
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents the development and validation of a two-zone model to predict fire development in a compartment. The model includes the effects of the ceiling jet on the convective heat transfer to enclosure walls and, unlike existing models, a new concept of surrogate fuel molecule (SFM) to model multi-fuel combustion, and a momentum equation to accurately track the displacement of the smoke layer interface over time. The paper presents a series of full-scale fire experiments conducted in the IUSTI fire laboratory, involving different combinations of solid and liquid fuels, and varying the compartment confinement level. The model results are compared to the experimental data. It was found that for all fire scenarios, the experimental trends are well reproduced by the model. The SFM concept predicts oxygen and carbon dioxide concentrations in the extracted smoke to within a few percent of the measurements, which is a good agreement considering the sensitivity of the model to chemical formulas and combustion properties of fuels. Comparison with other measurements, namely average gas and wall temperatures, is also good. For the large fires reported in this study, the impact of the ceiling jet leads to a slight underestimation of wall temperatures, while the model gives conservative estimates for small fires.
ISSN:2076-3417
2076-3417
DOI:10.3390/app12083951