Loading…

Proliferative Diabetic Retinopathy Diagnosis Using Varying-Scales Filter Banks and Double-Layered Thresholding

Diabetic retinopathy is one of the abnormalities of the retina in which a diabetic patient suffers from severe vision loss due to an affected retina. Proliferative diabetic retinopathy (PDR) is the final and most critical stage of diabetic retinopathy. Abnormal and fragile blood vessels start to gro...

Full description

Saved in:
Bibliographic Details
Published in:Diagnostics (Basel) 2023-06, Vol.13 (13), p.2231
Main Authors: Huda, Noor Ul, Salam, Anum Abdul, Alghamdi, Norah Saleh, Zeb, Jahan, Akram, Muhammad Usman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c517t-376468c4058ddb82041957cfd7d5b3876a09ce7954f6f77b7233c0d3e6955ee03
container_end_page
container_issue 13
container_start_page 2231
container_title Diagnostics (Basel)
container_volume 13
creator Huda, Noor Ul
Salam, Anum Abdul
Alghamdi, Norah Saleh
Zeb, Jahan
Akram, Muhammad Usman
description Diabetic retinopathy is one of the abnormalities of the retina in which a diabetic patient suffers from severe vision loss due to an affected retina. Proliferative diabetic retinopathy (PDR) is the final and most critical stage of diabetic retinopathy. Abnormal and fragile blood vessels start to grow on the surface of the retina at this stage. It causes retinal detachment, which may lead to complete blindness in severe cases. In this paper, a novel method is proposed for the detection and grading of neovascularization. The proposed system first performs pre-processing on input retinal images to enhance the vascular pattern, followed by blood vessel segmentation and optic disc localization. Then various features are tested on the candidate regions with different thresholds. In this way, positive and negative advanced diabetic retinopathy cases are separated. Optic disc coordinates are applied for the grading of neovascularization as NVD or NVE. The proposed algorithm improves the quality of automated diagnostic systems by eliminating normal blood vessels and exudates that might cause hindrances in accurate disease detection, thus resulting in more accurate detection of abnormal blood vessels. The evaluation of the proposed system has been carried out using performance parameters such as sensitivity, specificity, accuracy, and positive predictive value (PPV) on a publicly available standard retinal image database and one of the locally available databases. The proposed algorithm gives an accuracy of 98.5% and PPV of 99.8% on MESSIDOR and an accuracy of 96.5% and PPV of 100% on the local database.
doi_str_mv 10.3390/diagnostics13132231
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_04edbd195fcd4e70add33cd89fff5948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A757752583</galeid><doaj_id>oai_doaj_org_article_04edbd195fcd4e70add33cd89fff5948</doaj_id><sourcerecordid>A757752583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-376468c4058ddb82041957cfd7d5b3876a09ce7954f6f77b7233c0d3e6955ee03</originalsourceid><addsrcrecordid>eNptkl1rFDEUhgdRbKn9BYIMeOPN1HxOZq6ktrYWFhRtvQ2Z5GQ262yyTWYK--_NdGvtShPICSfv--TrFMVbjE4obdFH41TvQxqdTphiSgjFL4pDggSvGMPNyyfzg-I4pRXKrcW0Ifx1cUAFY7Qm_LDw32MYnIWoRncH5blTHWRo-SOPPmzUuNzOyXkvl8qb5Hxf_lJxm2P1U6sBUnnhhhFi-Vn536lU3pTnYeoGqBZqCxFMeb2MkJZhMNnzpnhl1ZDg-CEeFTcXX67PvlaLb5dXZ6eLSnMsxoqKmtWNZog3xnQNQQy3XGhrhOEdbUStUKtBtJzZ2grRCUKpRoZC3XIOgOhRcbXjmqBWchPdOp9ZBuXkfSLEXqqY7zmARAxMZzLfasNAIGVMhpmmtdbyljWZ9WnH2kzdGowGP0Y17EH3V7xbyj7cSYwoQwTjTPjwQIjhdoI0yrVLGoZBeQhTkqTJ_8JqQtssff-fdBWm6PNbzaqaIpyp_1R9_gHpvA15Yz1D5angQnDCm1l18owqdwNrp4MH63J-z0B3Bh1DShHs4yUxknPZyWfKLrvePX2fR8_fIqN_AAdV1gA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2836301103</pqid></control><display><type>article</type><title>Proliferative Diabetic Retinopathy Diagnosis Using Varying-Scales Filter Banks and Double-Layered Thresholding</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Huda, Noor Ul ; Salam, Anum Abdul ; Alghamdi, Norah Saleh ; Zeb, Jahan ; Akram, Muhammad Usman</creator><creatorcontrib>Huda, Noor Ul ; Salam, Anum Abdul ; Alghamdi, Norah Saleh ; Zeb, Jahan ; Akram, Muhammad Usman</creatorcontrib><description>Diabetic retinopathy is one of the abnormalities of the retina in which a diabetic patient suffers from severe vision loss due to an affected retina. Proliferative diabetic retinopathy (PDR) is the final and most critical stage of diabetic retinopathy. Abnormal and fragile blood vessels start to grow on the surface of the retina at this stage. It causes retinal detachment, which may lead to complete blindness in severe cases. In this paper, a novel method is proposed for the detection and grading of neovascularization. The proposed system first performs pre-processing on input retinal images to enhance the vascular pattern, followed by blood vessel segmentation and optic disc localization. Then various features are tested on the candidate regions with different thresholds. In this way, positive and negative advanced diabetic retinopathy cases are separated. Optic disc coordinates are applied for the grading of neovascularization as NVD or NVE. The proposed algorithm improves the quality of automated diagnostic systems by eliminating normal blood vessels and exudates that might cause hindrances in accurate disease detection, thus resulting in more accurate detection of abnormal blood vessels. The evaluation of the proposed system has been carried out using performance parameters such as sensitivity, specificity, accuracy, and positive predictive value (PPV) on a publicly available standard retinal image database and one of the locally available databases. The proposed algorithm gives an accuracy of 98.5% and PPV of 99.8% on MESSIDOR and an accuracy of 96.5% and PPV of 100% on the local database.</description><identifier>ISSN: 2075-4418</identifier><identifier>EISSN: 2075-4418</identifier><identifier>DOI: 10.3390/diagnostics13132231</identifier><identifier>PMID: 37443625</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Automation ; autonomous disease detection ; Banks (Finance) ; biomedical imaging ; Blood vessels ; Datasets ; Diabetes ; Diabetic retinopathy ; Diabetics ; Diagnosis ; Fractals ; fundus image analysis ; image processing ; proliferative diabetic retinopathy ; Retina ; Spectrum analysis ; Support vector machines</subject><ispartof>Diagnostics (Basel), 2023-06, Vol.13 (13), p.2231</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c517t-376468c4058ddb82041957cfd7d5b3876a09ce7954f6f77b7233c0d3e6955ee03</cites><orcidid>0000-0002-6208-7231 ; 0000-0003-2096-6200 ; 0000-0001-5683-8134 ; 0000-0001-6421-6001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2836301103/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2836301103?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37443625$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huda, Noor Ul</creatorcontrib><creatorcontrib>Salam, Anum Abdul</creatorcontrib><creatorcontrib>Alghamdi, Norah Saleh</creatorcontrib><creatorcontrib>Zeb, Jahan</creatorcontrib><creatorcontrib>Akram, Muhammad Usman</creatorcontrib><title>Proliferative Diabetic Retinopathy Diagnosis Using Varying-Scales Filter Banks and Double-Layered Thresholding</title><title>Diagnostics (Basel)</title><addtitle>Diagnostics (Basel)</addtitle><description>Diabetic retinopathy is one of the abnormalities of the retina in which a diabetic patient suffers from severe vision loss due to an affected retina. Proliferative diabetic retinopathy (PDR) is the final and most critical stage of diabetic retinopathy. Abnormal and fragile blood vessels start to grow on the surface of the retina at this stage. It causes retinal detachment, which may lead to complete blindness in severe cases. In this paper, a novel method is proposed for the detection and grading of neovascularization. The proposed system first performs pre-processing on input retinal images to enhance the vascular pattern, followed by blood vessel segmentation and optic disc localization. Then various features are tested on the candidate regions with different thresholds. In this way, positive and negative advanced diabetic retinopathy cases are separated. Optic disc coordinates are applied for the grading of neovascularization as NVD or NVE. The proposed algorithm improves the quality of automated diagnostic systems by eliminating normal blood vessels and exudates that might cause hindrances in accurate disease detection, thus resulting in more accurate detection of abnormal blood vessels. The evaluation of the proposed system has been carried out using performance parameters such as sensitivity, specificity, accuracy, and positive predictive value (PPV) on a publicly available standard retinal image database and one of the locally available databases. The proposed algorithm gives an accuracy of 98.5% and PPV of 99.8% on MESSIDOR and an accuracy of 96.5% and PPV of 100% on the local database.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Automation</subject><subject>autonomous disease detection</subject><subject>Banks (Finance)</subject><subject>biomedical imaging</subject><subject>Blood vessels</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Diabetics</subject><subject>Diagnosis</subject><subject>Fractals</subject><subject>fundus image analysis</subject><subject>image processing</subject><subject>proliferative diabetic retinopathy</subject><subject>Retina</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>2075-4418</issn><issn>2075-4418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1rFDEUhgdRbKn9BYIMeOPN1HxOZq6ktrYWFhRtvQ2Z5GQ262yyTWYK--_NdGvtShPICSfv--TrFMVbjE4obdFH41TvQxqdTphiSgjFL4pDggSvGMPNyyfzg-I4pRXKrcW0Ifx1cUAFY7Qm_LDw32MYnIWoRncH5blTHWRo-SOPPmzUuNzOyXkvl8qb5Hxf_lJxm2P1U6sBUnnhhhFi-Vn536lU3pTnYeoGqBZqCxFMeb2MkJZhMNnzpnhl1ZDg-CEeFTcXX67PvlaLb5dXZ6eLSnMsxoqKmtWNZog3xnQNQQy3XGhrhOEdbUStUKtBtJzZ2grRCUKpRoZC3XIOgOhRcbXjmqBWchPdOp9ZBuXkfSLEXqqY7zmARAxMZzLfasNAIGVMhpmmtdbyljWZ9WnH2kzdGowGP0Y17EH3V7xbyj7cSYwoQwTjTPjwQIjhdoI0yrVLGoZBeQhTkqTJ_8JqQtssff-fdBWm6PNbzaqaIpyp_1R9_gHpvA15Yz1D5angQnDCm1l18owqdwNrp4MH63J-z0B3Bh1DShHs4yUxknPZyWfKLrvePX2fR8_fIqN_AAdV1gA</recordid><startdate>20230630</startdate><enddate>20230630</enddate><creator>Huda, Noor Ul</creator><creator>Salam, Anum Abdul</creator><creator>Alghamdi, Norah Saleh</creator><creator>Zeb, Jahan</creator><creator>Akram, Muhammad Usman</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6208-7231</orcidid><orcidid>https://orcid.org/0000-0003-2096-6200</orcidid><orcidid>https://orcid.org/0000-0001-5683-8134</orcidid><orcidid>https://orcid.org/0000-0001-6421-6001</orcidid></search><sort><creationdate>20230630</creationdate><title>Proliferative Diabetic Retinopathy Diagnosis Using Varying-Scales Filter Banks and Double-Layered Thresholding</title><author>Huda, Noor Ul ; Salam, Anum Abdul ; Alghamdi, Norah Saleh ; Zeb, Jahan ; Akram, Muhammad Usman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-376468c4058ddb82041957cfd7d5b3876a09ce7954f6f77b7233c0d3e6955ee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Automation</topic><topic>autonomous disease detection</topic><topic>Banks (Finance)</topic><topic>biomedical imaging</topic><topic>Blood vessels</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Diabetics</topic><topic>Diagnosis</topic><topic>Fractals</topic><topic>fundus image analysis</topic><topic>image processing</topic><topic>proliferative diabetic retinopathy</topic><topic>Retina</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huda, Noor Ul</creatorcontrib><creatorcontrib>Salam, Anum Abdul</creatorcontrib><creatorcontrib>Alghamdi, Norah Saleh</creatorcontrib><creatorcontrib>Zeb, Jahan</creatorcontrib><creatorcontrib>Akram, Muhammad Usman</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Diagnostics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huda, Noor Ul</au><au>Salam, Anum Abdul</au><au>Alghamdi, Norah Saleh</au><au>Zeb, Jahan</au><au>Akram, Muhammad Usman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proliferative Diabetic Retinopathy Diagnosis Using Varying-Scales Filter Banks and Double-Layered Thresholding</atitle><jtitle>Diagnostics (Basel)</jtitle><addtitle>Diagnostics (Basel)</addtitle><date>2023-06-30</date><risdate>2023</risdate><volume>13</volume><issue>13</issue><spage>2231</spage><pages>2231-</pages><issn>2075-4418</issn><eissn>2075-4418</eissn><abstract>Diabetic retinopathy is one of the abnormalities of the retina in which a diabetic patient suffers from severe vision loss due to an affected retina. Proliferative diabetic retinopathy (PDR) is the final and most critical stage of diabetic retinopathy. Abnormal and fragile blood vessels start to grow on the surface of the retina at this stage. It causes retinal detachment, which may lead to complete blindness in severe cases. In this paper, a novel method is proposed for the detection and grading of neovascularization. The proposed system first performs pre-processing on input retinal images to enhance the vascular pattern, followed by blood vessel segmentation and optic disc localization. Then various features are tested on the candidate regions with different thresholds. In this way, positive and negative advanced diabetic retinopathy cases are separated. Optic disc coordinates are applied for the grading of neovascularization as NVD or NVE. The proposed algorithm improves the quality of automated diagnostic systems by eliminating normal blood vessels and exudates that might cause hindrances in accurate disease detection, thus resulting in more accurate detection of abnormal blood vessels. The evaluation of the proposed system has been carried out using performance parameters such as sensitivity, specificity, accuracy, and positive predictive value (PPV) on a publicly available standard retinal image database and one of the locally available databases. The proposed algorithm gives an accuracy of 98.5% and PPV of 99.8% on MESSIDOR and an accuracy of 96.5% and PPV of 100% on the local database.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>37443625</pmid><doi>10.3390/diagnostics13132231</doi><orcidid>https://orcid.org/0000-0002-6208-7231</orcidid><orcidid>https://orcid.org/0000-0003-2096-6200</orcidid><orcidid>https://orcid.org/0000-0001-5683-8134</orcidid><orcidid>https://orcid.org/0000-0001-6421-6001</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4418
ispartof Diagnostics (Basel), 2023-06, Vol.13 (13), p.2231
issn 2075-4418
2075-4418
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_04edbd195fcd4e70add33cd89fff5948
source Publicly Available Content Database; PubMed Central
subjects Accuracy
Algorithms
Automation
autonomous disease detection
Banks (Finance)
biomedical imaging
Blood vessels
Datasets
Diabetes
Diabetic retinopathy
Diabetics
Diagnosis
Fractals
fundus image analysis
image processing
proliferative diabetic retinopathy
Retina
Spectrum analysis
Support vector machines
title Proliferative Diabetic Retinopathy Diagnosis Using Varying-Scales Filter Banks and Double-Layered Thresholding
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proliferative%20Diabetic%20Retinopathy%20Diagnosis%20Using%20Varying-Scales%20Filter%20Banks%20and%20Double-Layered%20Thresholding&rft.jtitle=Diagnostics%20(Basel)&rft.au=Huda,%20Noor%20Ul&rft.date=2023-06-30&rft.volume=13&rft.issue=13&rft.spage=2231&rft.pages=2231-&rft.issn=2075-4418&rft.eissn=2075-4418&rft_id=info:doi/10.3390/diagnostics13132231&rft_dat=%3Cgale_doaj_%3EA757752583%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-376468c4058ddb82041957cfd7d5b3876a09ce7954f6f77b7233c0d3e6955ee03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2836301103&rft_id=info:pmid/37443625&rft_galeid=A757752583&rfr_iscdi=true