Loading…

Zebrafish models of candidate human epilepsy-associated genes provide evidence of hyperexcitability

Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2,200 candidate epilepsy-assoc...

Full description

Saved in:
Bibliographic Details
Published in:iScience 2024-07, Vol.27 (7), p.110172, Article 110172
Main Authors: LaCoursiere, Christopher Mark, Ullmann, Jeremy F.P., Koh, Hyun Yong, Turner, Laura, Baker, Cristina M., Robens, Barbara, Shao, Wanqing, Rotenberg, Alexander, McGraw, Christopher M., Poduri, Annapurna H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hundreds of novel candidate human epilepsy-associated genes have been identified thanks to advancements in next-generation sequencing and large genome-wide association studies, but establishing genetic etiology requires functional validation. We generated a list of >2,200 candidate epilepsy-associated genes, of which 48 were developed into stable loss-of-function (LOF) zebrafish models. Of those 48, evidence of seizure-like behavior was present in 5 (arfgef1, kcnd2, kcnv1, ubr5, and wnt8b). Further characterization provided evidence for epileptiform activity via electrophysiology in kcnd2 and wnt8b mutants. Additionally, arfgef1 and wnt8b mutants showed a decrease in the number of inhibitory interneurons in the optic tectum of larval animals. Further, RNA sequencing (RNA-seq) revealed convergent transcriptional abnormalities between mutant lines, consistent with their developmental defects and hyperexcitable phenotypes. These zebrafish models provide strongest experimental evidence supporting the role of ARFGEF1, KCND2, and WNT8B in human epilepsy and further demonstrate the utility of this model system for evaluating candidate human epilepsy genes. [Display omitted] •Arfgef1, kcnd2, kcnv1, ubr5, and wnt8b zebrafish mutants display seizures•Abnormal electrical activity is detected in kcnd2 and wnt8b mutant larvae•Arfgef1 and wnt8b mutants have decreased tectal inhibitory interneurons vs. wildtype•RNA-seq reveals convergent dysregulation across genetic mutants Biological sciences; Molecular biology; Neuroscience
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2024.110172